SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Katz Abram) "

Search: WFRF:(Katz Abram)

  • Result 1-10 of 30
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Adler, Dana, et al. (author)
  • Weak Electromagnetic Fields Accelerate Fusion of Myoblasts.
  • 2021
  • In: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 22:9
  • Journal article (peer-reviewed)abstract
    • Weak electromagnetic fields (WEF) alter Ca2+ handling in skeletal muscle myotubes. Owing to the involvement of Ca2+ in muscle development, we investigated whether WEF affects fusion of myoblasts in culture. Rat primary myoblast cultures were exposed to WEF (1.75 µT, 16 Hz) for up to six days. Under control conditions, cell fusion and creatine kinase (CK) activity increased in parallel and peaked at 4-6 days. WEF enhanced the extent of fusion after one and two days (by ~40%) vs. control, but not thereafter. Exposure to WEF also enhanced CK activity after two days (almost four-fold), but not afterwards. Incorporation of 3H-thymidine into DNA was enhanced by one-day exposure to WEF (~40%), indicating increased cell replication. Using the potentiometric fluorescent dye di-8-ANEPPS, we found that exposure of cells to 150 mM KCl resulted in depolarization of the cell membrane. However, prior exposure of cells to WEF for one day followed by addition of KCl resulted in hyperpolarization of the cell membrane. Acute exposure of cells to WEF also resulted in hyperpolarization of the cell membrane. Twenty-four hour incubation of myoblasts with gambogic acid, an inhibitor of the inward rectifying K+ channel 2.1 (Kir2.1), did not affect cell fusion, WEF-mediated acceleration of fusion or hyperpolarization. These data demonstrate that WEF accelerates fusion of myoblasts, resulting in myotube formation. The WEF effect is associated with hyperpolarization but WEF does not appear to mediate its effects on fusion by activating Kir2.1 channels.
  •  
2.
  • Berthelson, Per, et al. (author)
  • Acute exercise and starvation induced insulin resistance
  • 2012
  • In: Medicine & Science In Sports & Exercise, 2012, S498 Vol. 44 No. 5 Supplement. 2661.. ; , s. 2661-
  • Conference paper (other academic/artistic)abstract
    • It is well known that starvation causes insulin resistance. The mechanism is unclear but may relate disturbances in lipid metabolism i.e. incomplete mitochondrial FA oxidation and/or accumulation of lipid intermediates. Exercise results in increased substrate oxidation and may thus remove interfering lipid metabolites and reverse starvation-induced insulin resistance. However, the effect of acute exercise and starvation on insulin sensitivity is not known.Purpose: The aim of this study was to investigate the effect of exercise on starvation-induced insulin resistance and to elucidate potential mechanisms.Methods: Nine healthy lean subjects underwent 84h starvation on two occasions separated by at least 2 weeks. The starvation period was followed by either exercise (EX; 5x10 min intervals with 2-4 min rest, starting at 70 %VO2 max) or an equal period of rest (NE). Before and after the starvation period (3h after exercise/rest) subjects were investigated with muscle biopsies, bloo samples and an intravenous glucose tolerance test. Muscle samples were used for measurement of mitochondrial respiration in permeabilized muscle fibers (Oroboros oxygraph), glycogen content and activation of signaling proteins.Results: Insulin sensitivity was significantly higher in the EX group compared to the NE group (p<0.05). After starvation mitochondrial respiration was lower in both groups with complex I substrates whereas respiration with complex I+II substrates was higher in EX (p<0.05 vs. basal and NE). Muscle glycogen was decreased to 73% (NE) and 31% (EX) of the basal values. The EX group had a significant increased activation of AS160. Plasma FA increased 3-4 fold to 1.39±0.32(NE) and 1.80±0.49 (EX) (mmol/l) after starvation and plasma beta-hydroxybutyrate increased about 50-fold to 6.43±2.01(NE) and 7.12±1.59 (EX)(mmol/l).Conclusion: Acute exercise reverses starvation-induced insulin resistance. Plasma FA and BOH were increased to similar extent after NE and EX and cannot explain the changes in insulin sensitivity. However, an increased substrate oxidation together with the observed increased capacity for mitochondrial FA oxidation after EX may be involved in the activation of AS160 and the reversal of starvation-induced insulin resistance.
  •  
3.
  • Blackwood, Sarah J, et al. (author)
  • Elevated heart rate and decreased muscle endothelial nitric oxide synthase in early development of insulin resistance.
  • 2024
  • In: American Journal of Physiology. Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 327:2, s. E172-E182
  • Journal article (peer-reviewed)abstract
    • Insulin resistance (IR) is a risk factor for the development of several major metabolic diseases. Muscle fiber composition is established early in life and is associated with insulin sensitivity. Hence, muscle fiber composition was used to identify early defects in the development of IR in healthy young individuals in the absence of clinical manifestations. Biopsies were obtained from the thigh muscle, followed by an intravenous glucose tolerance test. Indices of insulin action were calculated and cardiovascular measurements, analyses of blood and muscle were performed. Whole-body insulin sensitivity (SIgalvin) was positively related to expression of type I muscle fibers (r=0.49; P<0.001) and negatively related to resting heart rate (HR, r=-0.39; P<0.001), which was also negatively related to expression of type I muscle fibers (r=-0.41; P<0.001). Muscle protein expression of endothelial nitric oxide synthase (eNOS), whose activation results in vasodilation, was measured in two subsets of subjects expressing a high percentage of type I fibers (59±6%; HR = 57±9 beats/min; SIgalvin = 1.8±0.7 units) or low percentage of type I fibers (30±6%; HR = 71±11; SIgalvin = 0.8±0.3 units; P<0.001 for all variables vs. first group). eNOS expression was: 1. higher in subjects with high type I expression; 2. almost two-fold higher in pools of type I vs. II fibers; 3. only detected in capillaries surrounding muscle fibers; and 4. linearly associated with SIgalvin. These data demonstrate that an altered function of the autonomic nervous system and a compromised capacity for vasodilation in the microvasculature occur early in the development of IR.
  •  
4.
  • Blackwood, Sarah J, et al. (author)
  • Extreme Variations in Muscle Fiber Composition Enable Detection of Insulin Resistance and Excessive Insulin Secretion.
  • 2022
  • In: Journal of Clinical Endocrinology and Metabolism. - : Oxford University Press. - 0021-972X .- 1945-7197. ; 107:7, s. e2729-e2737
  • Journal article (peer-reviewed)abstract
    • CONTEXT: Muscle fiber composition is associated with peripheral insulin action.OBJECTIVE: We investigated whether extreme differences in muscle fiber composition are associated with alterations in peripheral insulin action and secretion in young, healthy subjects who exhibit normal fasting glycemia and insulinemia.METHODS: Relaxation time following a tetanic contraction was used to identify subjects with a high or low expression of type I muscle fibers: group I (n=11), area occupied by type I muscle fibers = 61.0 ± 11.8%; group II (n=8), type I area = 36.0 ± 4.9% (P<0.001). Biopsies were obtained from the vastus lateralis muscle and analyzed for mitochondrial respiration on permeabilized fibers, muscle fiber composition and capillary density. An intravenous glucose tolerance test was performed and indices of glucose tolerance, insulin sensitivity and secretion were determined.RESULTS: Glucose tolerance was similar between groups, whereas whole-body insulin sensitivity was decreased by ~50% in group II vs group I (P=0.019). First phase insulin release (area under the insulin curve during 10 min after glucose infusion) was increased by almost 4-fold in group II vs I (P=0.01). Whole-body insulin sensitivity was correlated with % area occupied by type I fibers (r=0.54; P=0.018) and capillary density in muscle (r=0.61; P=0.005), but not with mitochondrial respiration. Insulin release was strongly related to % area occupied by type II fibers (r=0.93; P<0.001).CONCLUSIONS: Assessment of muscle contractile function in young healthy subjects may prove useful in identifying individuals with insulin resistance and enhanced glucose stimulated insulin secretion prior to onset of clinical manifestations.
  •  
5.
  • Blackwood, Sarah J, et al. (author)
  • Insulin resistance after a 3-day fast is associated with an increased capacity of skeletal muscle to oxidize lipids.
  • 2023
  • In: American Journal of Physiology. Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 324:5, s. E390-E401
  • Journal article (peer-reviewed)abstract
    • There is a debate on whether lipid-mediated insulin resistance derives from an increased or decreased capacity of muscle to oxidize fats. Here we examine the involvement of muscle fiber composition in the metabolic responses to a 3-day fast (starvation, which results in increases in plasma lipids and insulin resistance) in two groups of healthy young subjects: 1, area occupied by type I fibers = 61.0 ± 11.8%; 2, type I area = 36.0 ± 4.9% (P<0.001). Muscle biopsies and intravenous glucose tolerance tests were performed after an overnight fast and after starvation. Biopsies were analyzed for muscle fiber composition and mitochondrial respiration. Indices of glucose tolerance and insulin sensitivity were determined. Glucose tolerance was similar in both groups after an overnight fast and deteriorated to a similar degree in both groups after starvation. In contrast, whole-body insulin sensitivity decreased markedly after starvation in group 1 (P<0.01), whereas the decrease in group 2 was substantially smaller (P=0.06). Non-esterified fatty acids and β-hydroxybutyrate levels in plasma after an overnight fast were similar between groups and increased markedly and comparably in both groups after starvation, demonstrating similar degrees of lipid load. The capacity of permeabilized muscle fibers to oxidize lipids was significantly higher in group 1 vs. 2, whereas there was no significant difference in pyruvate oxidation between groups. The data demonstrate that loss of whole-body insulin sensitivity after short-term starvation is a function of muscle fiber composition and is associated with an elevated rather than a diminished capacity of muscle to oxidize lipids.
  •  
6.
  • Blackwood, Sarah J, et al. (author)
  • Isoproterenol enhances force production in mouse glycolytic and oxidative muscle via separate mechanisms.
  • 2019
  • In: Pflügers Archiv. - : Springer. - 0031-6768 .- 1432-2013. ; 471:10, s. 1305-1316
  • Journal article (peer-reviewed)abstract
    • Fight or flight is a biologic phenomenon that involves activation of β-adrenoceptors in skeletal muscle. However, how force generation is enhanced through adrenergic activation in different muscle types is not fully understood. We studied the effects of isoproterenol (ISO, β-receptor agonist) on force generation and energy metabolism in isolated mouse soleus (SOL, oxidative) and extensor digitorum longus (EDL, glycolytic) muscles. Muscles were stimulated with isometric tetanic contractions and analyzed for metabolites and phosphorylase activity. Under conditions of maximal force production, ISO enhanced force generation markedly more in SOL (22%) than in EDL (8%). Similarly, during a prolonged tetanic contraction (30 s for SOL and 10 s for EDL), ISO-enhanced the force × time integral more in SOL (25%) than in EDL (3%). ISO induced marked activation of phosphorylase in both muscles in the basal state, which was associated with glycogenolysis (less in SOL than in EDL), and in EDL only, a significant decrease (16%) in inorganic phosphate (Pi). ATP turnover during sustained contractions (1 s EDL, 5 s SOL) was not affected by ISO in EDL, but essentially doubled in SOL. Under conditions of maximal stimulation, ISO has a minor effect on force generation in EDL that is associated with a decrease in Pi, whereas ISO has a marked effect on force generation in SOL that is associated with an increase in ATP turnover. Thus, phosphorylase functions as a phosphate trap in ISO-mediated force enhancement in EDL and as a catalyzer of ATP supply in SOL.
  •  
7.
  • Blackwood, Sarah J, et al. (author)
  • Role of nitration in control of phosphorylase and glycogenolysis in mouse skeletal muscle.
  • 2021
  • In: American Journal of Physiology. Endocrinology and Metabolism. - : American Physiological Society. - 0193-1849 .- 1522-1555. ; 320:4, s. E691-E701
  • Journal article (peer-reviewed)abstract
    • Phosphorylase is one of the most carefully studied proteins in history, but knowledge of its regulation during intense muscle contraction is incomplete. Tyrosine nitration of purified preparations of skeletal muscle phosphorylase results in inactivation of the enzyme and this is prevented by antioxidants. Whether an altered redox state affects phosphorylase activity and glycogenolysis in contracting muscle is not known. Here, we investigate the role of redox state in control of phosphorylase and glycogenolysis in isolated mouse fast-twitch (extensor digitorum longus, EDL) and slow-twitch (soleus) muscle preparations during repeated contractions. Exposure of crude muscle extracts to H2O2 had little effect on phosphorylase activity. However, exposure of extracts to peroxynitrite (ONOO-), a nitrating/oxidizing agent, resulted in complete inactivation of phosphorylase (half maximal inhibition at ~200 µM ONOO-), which was fully reversed by the presence of an ONOO-scavanger, dithiothreitol (DTT). Incubation of isolated muscles with ONOO- resulted in nitration of phosphorylase and marked inhibition of glycogenolysis during repeated contractions. ONOO- also resulted in large decreases in high-energy phosphates (ATP and phosphocreatine) in the rested state and following repeated contractions. These metabolic changes were associated with decreased force production during repeated contractions (to ~60% of control). In contrast, repeated contractions did not result in nitration of phosphorylase, nor did DTT or the general antioxidant N-acetylcysteine alter glycogenolysis during repeated contractions. These findings demonstrate that ONOO- inhibits phosphorylase and glycogenolysis in living muscle under extreme conditions. However, nitration does not play a significant role in control of phosphorylase and glycogenolysis during repeated contractions.
  •  
8.
  • Bruton, Joseph D., et al. (author)
  • Increased fatigue resistance linked to Ca(2+)-stimulated mitochondrial biogenesis in muscle fibres of cold-acclimated mice
  • 2010
  • In: Journal of Physiology. - : Wiley. - 0022-3751 .- 1469-7793. ; 588:21, s. 4275-4288
  • Journal article (peer-reviewed)abstract
    • Mammals exposed to a cold environment initially generate heat by repetitive muscle activity (shivering). Shivering is successively replaced by the recruitment of uncoupling protein-1 (UCP1)-dependent heat production in brown adipose tissue. Interestingly, adaptations observed in skeletal muscles of cold-exposed animals are similar to those observed with endurance training. We hypothesized that increased myoplasmic free [Ca2+] ([Ca2+]i) is important for these adaptations. To test this hypothesis, experiments were performed on flexor digitorum brevis (FDB) muscles, which do not participate in the shivering response, of adult wild-type (WT) and UCP1-ablated (UCP1-KO) mice kept either at room temperature (24 ºC) or cold-acclimated (4 ºC) for 4-5 weeks. [Ca2+]i (measured with indo-1) and force were measured under control conditions and during fatigue induced by repeated tetanic stimulation in intact single fibres. The results show no differences between fibres from WT and UCP1-KO mice. However, muscle fibres from cold-acclimated mice showed significant increases in basal [Ca2+]i (~50%), tetanic [Ca2+]i (~40%), and sarcoplasmic reticulum (SR) Ca2+ leak (~four-fold) as compared to fibres from room-temperature mice. Muscles of cold-acclimated mice showed increased expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and increased citrate synthase activity (reflecting increased mitochondrial content). Fibres of cold-acclimated mice were more fatigue resistant with higher tetanic [Ca2+]i and less force loss during fatiguing stimulation. In conclusion, cold exposure induces changes in FDB muscles similar to those observed with endurance training and we propose that increased [Ca2+]i is a key factor underlying these adaptations.
  •  
9.
  • Durrant, Christelle, et al. (author)
  • Defects in Galactose Metabolism and Glycoconjugate Biosynthesis in a UDP-Glucose Pyrophosphorylase-Deficient Cell Line Are Reversed by Adding Galactose to the Growth Medium.
  • 2020
  • In: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 21:6
  • Journal article (peer-reviewed)abstract
    • UDP-glucose (UDP-Glc) is synthesized by UGP2-encoded UDP-Glc pyrophosphorylase (UGP) and is required for glycoconjugate biosynthesis and galactose metabolism because it is a uridyl donor for galactose-1-P (Gal1P) uridyltransferase. Chinese hamster lung fibroblasts harboring a hypomrphic UGP(G116D) variant display reduced UDP-Glc levels and cannot grow if galactose is the sole carbon source. Here, these cells were cultivated with glucose in either the absence or presence of galactose in order to investigate glycoconjugate biosynthesis and galactose metabolism. The UGP-deficient cells display < 5% control levels of UDP-Glc/UDP-Gal and > 100-fold reduction of [6-3H]galactose incorporation into UDP-[6-3H]galactose, as well as multiple deficits in glycoconjugate biosynthesis. Cultivation of these cells in the presence of galactose leads to partial restoration of UDP-Glc levels, galactose metabolism and glycoconjugate biosynthesis. The Vmax for recombinant human UGP(G116D) with Glc1P is 2000-fold less than that of the wild-type protein, and UGP(G116D) displayed a mildly elevated Km for Glc1P, but no activity of the mutant enzyme towards Gal1P was detectable. To conclude, although the mechanism behind UDP-Glc/Gal production in the UGP-deficient cells remains to be determined, the capacity of this cell line to change its glycosylation status as a function of extracellular galactose makes it a useful, reversible model with which to study different aspects of galactose metabolism and glycoconjugate biosynthesis.
  •  
10.
  • Edman, Sebastian, et al. (author)
  • Pro-Brain-Derived Neurotrophic Factor (BDNF), but Not Mature BDNF, Is Expressed in Human Skeletal Muscle : Implications for Exercise-Induced Neuroplasticity.
  • 2024
  • In: Function. - : Oxford University Press. - 2633-8823. ; 5:3
  • Journal article (peer-reviewed)abstract
    • Exercise promotes brain plasticity partly by stimulating increases in mature brain-derived neurotrophic factor (mBDNF), but the role of the pro-BDNF isoform in the regulation of BDNF metabolism in humans is unknown. We quantified the expression of pro-BDNF and mBDNF in human skeletal muscle and plasma at rest, after acute exercise (+/- lactate infusion), and after fasting. Pro-BDNF and mBDNF were analyzed with immunoblotting, enzyme-linked immunosorbent assay, immunohistochemistry, and quantitative polymerase chain reaction. Pro-BDNF was consistently and clearly detected in skeletal muscle (40-250 pg mg-1 dry muscle), whereas mBDNF was not. All methods showed a 4-fold greater pro-BDNF expression in type I muscle fibers compared to type II fibers. Exercise resulted in elevated plasma levels of mBDNF (55%) and pro-BDNF (20%), as well as muscle levels of pro-BDNF (∼10%, all P < 0.05). Lactate infusion during exercise induced a significantly greater increase in plasma mBDNF (115%, P < 0.05) compared to control (saline infusion), with no effect on pro-BDNF levels in plasma or muscle. A 3-day fast resulted in a small increase in plasma pro-BDNF (∼10%, P < 0.05), with no effect on mBDNF. Pro-BDNF is highly expressed in human skeletal muscle, particularly in type I fibers, and is increased after exercise. While exercising with higher lactate augmented levels of plasma mBDNF, exercise-mediated increases in circulating mBDNF likely derive partly from release and cleavage of pro-BDNF from skeletal muscle, and partly from neural and other tissues. These findings have implications for preclinical and clinical work related to a wide range of neurological disorders such as Alzheimer's, clinical depression, and amyotrophic lateral sclerosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 30
Type of publication
journal article (25)
conference paper (4)
doctoral thesis (1)
Type of content
peer-reviewed (24)
other academic/artistic (6)
Author/Editor
Katz, Abram (30)
Apró, William, 1980- (10)
Blackwood, Sarah J (10)
Moberg, Marcus, 1986 ... (6)
Larsen, Filip J, 197 ... (6)
Horwath, Oscar, 1991 ... (5)
show more...
Bruton, Joseph D (4)
Tischer, Dominik (4)
Ekblom, Maria, 1974- (4)
Andersson, Eva (3)
Pontén, Marjan (3)
Sahlin, Kent (3)
Ekblom, Björn, 1938- (3)
Westerblad, Håkan (3)
Lanner, Johanna T (3)
Flockhart, Mikael (3)
Zhang, Shi-Li (2)
Nilsson, Lina (2)
Frank, Per (2)
Assefaw-Redda, Yohan ... (2)
Zhang, Shi-Jin (2)
Edman, Sebastian (2)
Westerblad, Hakan (2)
Nedergaard, Jan (1)
Shabalina, Irina G. (1)
Adler, Dana (1)
Shapira, Zehavit (1)
Weiss, Shimon (1)
Shainberg, Asher (1)
Zhang, Zhi-Bin (1)
Zhang, Zhibin (1)
Lundberg, Ingrid E. (1)
Alexanderson, Helene (1)
Zhang, SJ (1)
Aydin, Jan (1)
Berthelson, Per (1)
Dastmalchi, Maryam (1)
van de Ven, Myrthe P ... (1)
Röja, Julia (1)
Jude, Baptiste (1)
Mader, Theresa (1)
Yamada, Takashi (1)
Thelestam, Monica (1)
Ivarsson, Niklas (1)
Wada, Masanobu (1)
Tavi, Pasi (1)
Durrant, Christelle (1)
Fuehring, Jana I (1)
Willemetz, Alexandra (1)
Chrétien, Dominique (1)
show less...
University
The Swedish School of Sport and Health Sciences (25)
Karolinska Institutet (15)
Royal Institute of Technology (3)
Uppsala University (1)
Stockholm University (1)
Language
English (30)
Research subject (UKÄ/SCB)
Medical and Health Sciences (23)
Natural sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view