SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Keppens R.) "

Sökning: WFRF:(Keppens R.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barker, Philip A., et al. (författare)
  • Carbon cycling within an East African lake revealed by the carbon isotope composition of diatom silica: a 25-ka record from Lake Challa, Mt. Kilimanjaro
  • 2013
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791. ; 66, s. 55-63
  • Tidskriftsartikel (refereegranskat)abstract
    • The carbon cycle of a lake is a balance between supply from the atmosphere and catchment, and the net demand exerted by primary producers, minus losses back to the atmosphere and to sediment storage. Evaluating the sum of these processes and reconstructing them from sediment records of lake history requires a range of methods and a multi-proxy approach. One promising technique is to explore the carbon-isotope composition (delta C-13(diatom)) of organic matter incorporated within the silica frustules of diatom algae. Here we present a 25,000-year record of delta C-13(diatom) from the sediments of crater Lake Challa on the eastern flank of Mt. Kilimanjaro, and along with other proxy data we make inferences about the three major phases in the history of the lake's carbon cycle. From 25 ka to 15.8 ka years BP, delta C-13(diatom) is positively correlated with the delta C-13 of bulk sediment organic matter (delta C-13(bulk)), indicating that high diatom productivity, as recorded by high % biogenic silica at this time, was preferentially removing C-12 and enriching the delta C-13 of lake-water dissolved inorganic carbon. From 15.8 to 5.5 ka the correlation between delta C-13(diatom) and delta C-13(bulk) breaks down, suggesting carbon supply to the lake satisfied or exceeded the demand from productivity. From 5.5 ka BP the positive correlation resumes, indicating an increase in the internal demand for carbon relative to external supply. Diatom frustule-bound carbon isotopes offer an original tool in examining long-term fluctuations in a lake's carbon budget and how the balance between supply and demand has changed through time. (C) 2012 Elsevier Ltd. All rights reserved.
  •  
2.
  • Henri, P., et al. (författare)
  • Nonlinear evolution of the magnetized Kelvin-Helmholtz instability : From fluid to kinetic modeling
  • 2013
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 20:10, s. 102118-
  • Tidskriftsartikel (refereegranskat)abstract
    • The nonlinear evolution of collisionless plasmas is typically a multi-scale process, where the energy is injected at large, fluid scales and dissipated at small, kinetic scales. Accurately modelling the global evolution requires to take into account the main micro-scale physical processes of interest. This is why comparison of different plasma models is today an imperative task aiming at understanding cross-scale processes in plasmas. We report here the first comparative study of the evolution of a magnetized shear flow, through a variety of different plasma models by using magnetohydrodynamic (MHD), Hall-MHD, two-fluid, hybrid kinetic, and full kinetic codes. Kinetic relaxation effects are discussed to emphasize the need for kinetic equilibriums to study the dynamics of collisionless plasmas in non trivial configurations. Discrepancies between models are studied both in the linear and in the nonlinear regime of the magnetized Kelvin-Helmholtz instability, to highlight the effects of small scale processes on the nonlinear evolution of collisionless plasmas. We illustrate how the evolution of a magnetized shear flow depends on the relative orientation of the fluid vorticity with respect to the magnetic field direction during the linear evolution when kinetic effects are taken into account. Even if we found that small scale processes differ between the different models, we show that the feedback from small, kinetic scales to large, fluid scales is negligible in the nonlinear regime. This study shows that the kinetic modeling validates the use of a fluid approach at large scales, which encourages the development and use of fluid codes to study the nonlinear evolution of magnetized fluid flows, even in the collisionless regime.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy