SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kessler B. M.) "

Search: WFRF:(Kessler B. M.)

  • Result 1-10 of 93
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Clark, DW, et al. (author)
  • Associations of autozygosity with a broad range of human phenotypes
  • 2019
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4957-
  • Journal article (peer-reviewed)abstract
    • In many species, the offspring of related parents suffer reduced reproductive success, a phenomenon known as inbreeding depression. In humans, the importance of this effect has remained unclear, partly because reproduction between close relatives is both rare and frequently associated with confounding social factors. Here, using genomic inbreeding coefficients (FROH) for >1.4 million individuals, we show that FROH is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44–66%] in the odds of having children. Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH is independent of all environmental confounding.
  •  
6.
  • Hudson, Lawrence N, et al. (author)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • In: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Journal article (peer-reviewed)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
7.
  •  
8.
  • Sabatini, F. M., et al. (author)
  • sPlotOpen - An environmentally balanced, open-access, global dataset of vegetation plots
  • 2021
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238.
  • Journal article (peer-reviewed)abstract
    • Motivation Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called 'sPlot', compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01-40,000 m(2). Time period and grain 1888-2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot-level records. Software format Three main matrices (.csv), relationally linked.
  •  
9.
  • Aprile, E., et al. (author)
  • The XENON1T dark matter experiment
  • 2017
  • In: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 77:12
  • Journal article (peer-reviewed)abstract
    • The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2t liquid xenon inventory, 2.0t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented.
  •  
10.
  • Mullins, Niamh, et al. (author)
  • Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
  • 2022
  • In: Biological Psychiatry. - : Elsevier. - 0006-3223 .- 1873-2402. ; 91:3, s. 313-327
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders.METHODS: We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors.RESULTS: Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged.CONCLUSIONS: Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 93
Type of publication
journal article (87)
conference paper (4)
research review (2)
Type of content
peer-reviewed (91)
other academic/artistic (2)
Author/Editor
Brown, A. (19)
Colijn, A. P. (16)
Manfredini, A. (16)
Wang, H. (16)
Aalbers, J. (16)
Agostini, F. (16)
show more...
Amaro, F. D. (16)
Aprile, E. (16)
Arneodo, F. (16)
Baudis, L. (16)
Brown, E. (16)
Bruenner, S. (16)
Bruno, G. (16)
Budnik, R. (16)
Alfonsi, M. (16)
Barrow, P. (16)
Berger, T. (16)
Cardoso, J. M. R. (16)
Cichon, D. (16)
Coderre, D. (16)
Cussonneau, J. P. (16)
Decowski, M. P. (16)
Fieguth, A. (16)
Fulgione, W. (16)
Di Gangi, P. (16)
Di Giovanni, A. (16)
Garbini, M. (16)
Geis, C. (16)
Greene, Z. (16)
Grignon, C. (16)
Hasterok, C. (16)
Kaminsky, B. (16)
Kish, A. (16)
Landsman, H. (16)
Lang, R. F. (16)
Lindemann, S. (16)
Lindner, M. (16)
Lopes, J. A. M. (16)
Masbou, J. (16)
Massoli, F. V. (16)
Mayani, D. (16)
Messina, M. (16)
Micheneau, K. (16)
Molinario, A. (16)
Murra, M. (16)
Naganoma, J. (16)
Oberlack, U. (16)
Pakarha, P. (16)
Pelssers, Bart (16)
de Perio, P. (16)
show less...
University
Karolinska Institutet (41)
Stockholm University (26)
Lund University (16)
Uppsala University (15)
University of Gothenburg (11)
Umeå University (7)
show more...
Swedish University of Agricultural Sciences (7)
Linköping University (6)
Royal Institute of Technology (3)
Örebro University (3)
Linnaeus University (3)
Stockholm School of Economics (2)
Chalmers University of Technology (2)
show less...
Language
English (93)
Research subject (UKÄ/SCB)
Natural sciences (36)
Medical and Health Sciences (31)
Agricultural Sciences (2)
Social Sciences (2)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view