SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kieselbach Thomas 1964 ) "

Search: WFRF:(Kieselbach Thomas 1964 )

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Kufryk, Galyna, et al. (author)
  • Association of small CAB-like proteins (SCPs) of Synechocystis sp. PCC 6803 with Photosystem II
  • 2008
  • In: Photosynthesis Research. - : SpringerLink. - 0166-8595 .- 1573-5079. ; 95:2/3, s. 135-145
  • Journal article (peer-reviewed)abstract
    • The cyanobacterial small CAB-like proteins (SCPs) are one-helix proteins with compelling similarity to the first and third transmembrane helix of proteins belonging to the CAB family of light-harvesting complex proteins in plants. The SCP proteins are transiently expressed at high light intensity and other stress conditions but their exact function remains largely unknown. Recently we showed association of ScpD with light-stressed, monomeric Photosystem II in Synechocystis sp. PCC 6803 (Yao et al. J Biol Chem 282:267-276, 2007). Here we show that ScpB associates with Photosystem II at normal growth conditions. Moreover, upon introduction of a construct into Synechocystis so that ScpB is expressed continuously under normal growth conditions, ScpE was detected under non-stressed conditions as well, and was copurified with tagged ScpB and Photosystem II. We also report on a one-helix protein, Slr1544, that is somewhat similar to the SCPs and whose gene is cotranscribed with that of ScpD; Slr1544 is another member of the extended light-harvesting-like (Lil) protein family, and we propose to name it LilA.
  •  
3.
  • Lindahl, Marika, et al. (author)
  • Disulphide proteomes and interactions with thioredoxin on the track towards understanding redox regulation in chloroplasts and cyanobacteria
  • 2009
  • In: Journal of Proteomics. - : Elsevier. - 1874-3919 .- 1876-7737. ; 72:3, s. 416-438
  • Research review (peer-reviewed)abstract
    • Light-dependent disulphide/dithiol exchange catalysed by thioredoxin is a classical example of redox regulation of chloroplast enzymes. Recent proteome studies have mapped thioredoxin target proteins in all chloroplast compartments ranging from the envelope to the thylakoid lumen. Progress in the methodologies has made it possible to identify which cysteine residues interact with thioredoxin and to tackle membrane-bound thioredoxin targets. To date, more than hundred targets of thioredoxin and glutaredoxin have been found in plastids from Arabidopsis, spinach, poplar and Chlamydomonas reinhardtii. Thioredoxin-mediated redox control appears to be a feature of the central pathways for assimilation and storage of carbon, sulphur and nitrogen, as well as for translation and protein folding. Cyanobacteria are oxygenic photosynthetic prokaryotes, which presumably share a common ancestor with higher plant plastids. As in chloroplasts, cyanobacterial thioredoxins receive electrons from the photosynthetic electron transport, and thioredoxin-targeted proteins are therefore highly interesting in the context of acclimation of these organisms to their environment. Studies of the unicellular model cyanobacterium Synechocystis sp. PCC 6803 revealed 77 thioredoxin target proteins. Notably, the functions of all these thioredoxin targets highlight essentially the same processes as those described in chloroplasts suggesting that thioredoxin-mediated redox signalling is equally significant in oxygenic photosynthetic prokaryotes and eukaryotes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view