SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kilaru Sreedhar) "

Search: WFRF:(Kilaru Sreedhar)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Martin, Francis, et al. (author)
  • The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis
  • 2008
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 452:7183, s. 7-88
  • Journal article (peer-reviewed)abstract
    • Mycorrhizal symbioses -- the union of roots and soil fungi -- are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants1,2. Boreal, temperate, and montane forests all depend upon ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of 2 ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here, we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-million-base genome assembly contains ~ 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features most notably a battery of effector-type small secreted proteins (SSP) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific proteins likely play a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell walls, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus which enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem in order to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.
  •  
2.
  • Stajich, Jason E., et al. (author)
  • Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus)
  • 2010
  • In: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 107:26, s. 11889-11894
  • Journal article (peer-reviewed)abstract
    • The mushroom Coprinopsis cinerea is a classic experimental model for multicellular development in fungi because it grows on defined media, completes its life cycle in 2 weeks, produces some 10(8) synchronized meiocytes, and can be manipulated at all stages in development by mutation and transformation. The 37-megabase genome of C. cinerea was sequenced and assembled into 13 chromosomes. Meiotic recombination rates vary greatly along the chromosomes, and retrotransposons are absent in large regions of the genome with low levels of meiotic recombination. Single-copy genes with identifiable orthologs in other basidiomycetes are predominant in low-recombination regions of the chromosome. In contrast, paralogous multicopy genes are found in the highly recombining regions, including a large family of protein kinases (FunK1) unique to multicellular fungi. Analyses of P450 and hydrophobin gene families confirmed that local gene duplications drive the expansions of paralogous copies and the expansions occur in independent lineages of Agaricomycotina fungi. Gene-expression patterns from microarrays were used to dissect the transcriptional program of dikaryon formation (mating). Several members of the FunK1 kinase family are differentially regulated during sexual morphogenesis, and coordinate regulation of adjacent duplications is rare. The genomes of C. cinerea and Laccaria bicolor, a symbiotic basidiomycete, share extensive regions of synteny. The largest syntenic blocks occur in regions with low meiotic recombination rates, no transposable elements, and tight gene spacing, where orthologous single-copy genes are overrepresented. The chromosome assembly of C. cinerea is an essential resource in understanding the evolution of multicellularity in the fungi.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view