SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kircher M.) "

Search: WFRF:(Kircher M.)

  • Result 1-10 of 43
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Jonsson, Lina, 1982, et al. (author)
  • Characterisation of age and polarity at onset in bipolar disorder
  • 2021
  • In: British Journal of Psychiatry. - : Royal College of Psychiatrists. - 0007-1250 .- 1472-1465. ; 219:6, s. 659-669
  • Journal article (peer-reviewed)abstract
    • Background Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools. Aims To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics. Method Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts. Results Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (beta = -0.34 years, s.e. = 0.08), major depression (beta = -0.34 years, s.e. = 0.08), schizophrenia (beta = -0.39 years, s.e. = 0.08), and educational attainment (beta = -0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO. Conclusions AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.
  •  
2.
  • Ching, C. R. K., et al. (author)
  • What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group
  • 2022
  • In: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 43:1, s. 56-82
  • Journal article (peer-reviewed)abstract
    • MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.
  •  
3.
  • Landén, Mikael, 1966, et al. (author)
  • Brain aging in major depressive disorder: results from the ENIGMA major depressive disorder working group
  • 2021
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26, s. 5124-5139
  • Journal article (peer-reviewed)abstract
    • Major depressive disorder (MDD) is associated with an increased risk of brain atrophy, aging-related diseases, and mortality. We examined potential advanced brain aging in adult MDD patients, and whether this process is associated with clinical characteristics in a large multicenter international dataset. We performed a mega-analysis by pooling brain measures derived from T1-weighted MRI scans from 19 samples worldwide. Healthy brain aging was estimated by predicting chronological age (18–75 years) from 7 subcortical volumes, 34 cortical thickness and 34 surface area, lateral ventricles and total intracranial volume measures separately in 952 male and 1236 female controls from the ENIGMA MDD working group. The learned model coefficients were applied to 927 male controls and 986 depressed males, and 1199 female controls and 1689 depressed females to obtain independent unbiased brain-based age predictions. The difference between predicted “brain age” and chronological age was calculated to indicate brain-predicted age difference (brain-PAD). On average, MDD patients showed a higher brain-PAD of +1.08 (SE 0.22) years (Cohen’s d = 0.14, 95% CI: 0.08–0.20) compared with controls. However, this difference did not seem to be driven by specific clinical characteristics (recurrent status, remission status, antidepressant medication use, age of onset, or symptom severity). This highly powered collaborative effort showed subtle patterns of age-related structural brain abnormalities in MDD. Substantial within-group variance and overlap between groups were observed. Longitudinal studies of MDD and somatic health outcomes are needed to further assess the clinical value of these brain-PAD estimates. © 2020, The Author(s).
  •  
4.
  •  
5.
  • Patel, Y., et al. (author)
  • Virtual Ontogeny of Cortical Growth Preceding Mental Illness
  • 2022
  • In: Biological Psychiatry. - : Elsevier BV. - 0006-3223 .- 1873-2402. ; 92:4, s. 299-313
  • Journal article (peer-reviewed)abstract
    • Background: Morphology of the human cerebral cortex differs across psychiatric disorders, with neurobiology and developmental origins mostly undetermined. Deviations in the tangential growth of the cerebral cortex during pre/perinatal periods may be reflected in individual variations in cortical surface area later in life. Methods: Interregional profiles of group differences in surface area between cases and controls were generated using T1-weighted magnetic resonance imaging from 27,359 individuals including those with attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, schizophrenia, and high general psychopathology (through the Child Behavior Checklist). Similarity of interregional profiles of group differences in surface area and prenatal cell-specific gene expression was assessed. Results: Across the 11 cortical regions, group differences in cortical area for attention-deficit/hyperactivity disorder, schizophrenia, and Child Behavior Checklist were dominant in multimodal association cortices. The same interregional profiles were also associated with interregional profiles of (prenatal) gene expression specific to proliferative cells, namely radial glia and intermediate progenitor cells (greater expression, larger difference), as well as differentiated cells, namely excitatory neurons and endothelial and mural cells (greater expression, smaller difference). Finally, these cell types were implicated in known pre/perinatal risk factors for psychosis. Genes coexpressed with radial glia were enriched with genes implicated in congenital abnormalities, birth weight, hypoxia, and starvation. Genes coexpressed with endothelial and mural genes were enriched with genes associated with maternal hypertension and preterm birth. Conclusions: Our findings support a neurodevelopmental model of vulnerability to mental illness whereby prenatal risk factors acting through cell-specific processes lead to deviations from typical brain development during pregnancy.
  •  
6.
  • Schijven, Dick, et al. (author)
  • Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium
  • 2023
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 120:14
  • Journal article (peer-reviewed)abstract
    • Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macrostructural asymmetry may reflect differences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia.
  •  
7.
  • Jahnke, T., et al. (author)
  • Inner-Shell-Ionization-Induced Femtosecond Structural Dynamics of Water Molecules Imaged at an X-Ray Free-Electron Laser
  • 2021
  • In: Physical Review X. - : American Physical Society. - 2160-3308. ; 11:4
  • Journal article (peer-reviewed)abstract
    • The ultrafast structural dynamics of water following inner-shell ionization is a crucial issue in high-energy radiation chemistry. We have exposed isolated water molecules to a short x-ray pulse from a free-electron laser and detected momenta of all produced ions in coincidence. By combining experimental results and theoretical modeling, we can image dissociation dynamics of individual molecules in unprecedented detail. We reveal significant molecular structural dynamics in H2O2+, such as asymmetric deformation and bond-angle opening, leading to two-body or three-body fragmentation on a timescale of a few femtoseconds. We thus reconstruct several snapshots of structural dynamics at different time intervals, which highlight dynamical patterns that are relevant as initiating steps of subsequent radiation-damage processes.
  •  
8.
  • McWhinney, Sean R, et al. (author)
  • Mega-analysis of association between obesity and cortical morphology in bipolar disorders: ENIGMA study in 2832 participants.
  • 2023
  • In: Psychological medicine. - 1469-8978. ; 53:14, s. 6743-6753
  • Journal article (peer-reviewed)abstract
    • Obesity is highly prevalent and disabling, especially in individuals with severe mental illness including bipolar disorders (BD). The brain is a target organ for both obesity and BD. Yet, we do not understand how cortical brain alterations in BD and obesity interact.We obtained body mass index (BMI) and MRI-derived regional cortical thickness, surface area from 1231 BD and 1601 control individuals from 13 countries within the ENIGMA-BD Working Group. We jointly modeled the statistical effects of BD and BMI on brain structure using mixed effects and tested for interaction and mediation. We also investigated the impact of medications on the BMI-related associations.BMI and BD additively impacted the structure of many of the same brain regions. Both BMI and BD were negatively associated with cortical thickness, but not surface area. In most regions the number of jointly used psychiatric medication classes remained associated with lower cortical thickness when controlling for BMI. In a single region, fusiform gyrus, about a third of the negative association between number of jointly used psychiatric medications and cortical thickness was mediated by association between the number of medications and higher BMI.We confirmed consistent associations between higher BMI and lower cortical thickness, but not surface area, across the cerebral mantle, in regions which were also associated with BD. Higher BMI in people with BD indicated more pronounced brain alterations. BMI is important for understanding the neuroanatomical changes in BD and the effects of psychiatric medications on the brain.
  •  
9.
  •  
10.
  • McWhinney, Sean R, et al. (author)
  • Association between body mass index and subcortical brain volumes in bipolar disorders-ENIGMA study in 2735 individuals.
  • 2021
  • In: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26:11, s. 6806-6819
  • Journal article (peer-reviewed)abstract
    • Individuals with bipolar disorders (BD) frequently suffer from obesity, which is often associated with neurostructural alterations. Yet, the effects of obesity on brain structure in BD are under-researched. We obtained MRI-derived brain subcortical volumes and body mass index (BMI) from 1134 BD and 1601 control individuals from 17 independent research sites within the ENIGMA-BD Working Group. We jointly modeled the effects of BD and BMI on subcortical volumes using mixed-effects modeling and tested for mediation of group differences by obesity using nonparametric bootstrapping. All models controlled for age, sex, hemisphere, total intracranial volume, and data collection site. Relative to controls, individuals with BD had significantly higher BMI, larger lateral ventricular volume, and smaller volumes of amygdala, hippocampus, pallidum, caudate, and thalamus. BMI was positively associated with ventricular and amygdala and negatively with pallidal volumes. When analyzed jointly, both BD and BMI remained associated with volumes of lateral ventricles and amygdala. Adjusting for BMI decreased the BD vs control differences in ventricular volume. Specifically, 18.41% of the association between BD and ventricular volume was mediatedby BMI (Z=2.73, p=0.006). BMI was associated with similar regional brain volumes as BD, including lateral ventricles, amygdala, and pallidum. Higher BMI may in part account for larger ventricles, one of the most replicated findings in BD. Comorbidity with obesity could explain why neurostructural alterations are more pronounced in some individuals with BD. Future prospective brain imaging studies should investigate whether obesity could be a modifiable risk factor for neuroprogression.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 43
Type of publication
journal article (38)
conference paper (4)
book chapter (1)
Type of content
peer-reviewed (35)
other academic/artistic (8)
Author/Editor
Dannlowski, U (14)
Dannlowski, Udo (11)
Vieta, E (11)
Hahn, T (11)
Roberts, G (10)
Landén, Mikael, 1966 (10)
show more...
Grotegerd, Dominik (10)
Nenadić, Igor (10)
MCDONALD, C (10)
Pomarol-Clotet, E (10)
Nenadic, I. (10)
Stein, Frederike (9)
Thompson, Paul M (9)
Jahanshad, N (9)
Salvador, R (9)
Alda, M. (9)
Agartz, I (8)
Stein, DJ (8)
Radua, J (8)
Gruber, O (8)
Kircher, Albert, 197 ... (8)
Lützhöft, Margareta, ... (8)
Stein, Dan J (8)
Andreassen, OA (7)
Ching, Christopher R ... (7)
Brosch, Katharina (7)
Hahn, Tim (7)
Reif, A. (7)
Elvsashagen, T (6)
Baune, BT (6)
Mitchell, PB (6)
Alda, Martin (6)
Benedetti, Francesco (6)
Fullerton, Janice M (6)
Hajek, Tomas (6)
Sim, Kang (6)
Mitchell, Philip B (6)
Pomarol-Clotet, Edit ... (6)
Salvador, Raymond (6)
Thomopoulos, Sophia ... (6)
Vieta, Eduard (6)
Andreassen, Ole A (6)
Cannon, DM (6)
Kecklund, G (6)
Alnaes, D (6)
Kircher, Tilo (6)
Hajek, T (6)
Lopez-Jaramillo, C (6)
Arango, C (6)
Jansen, Andreas (6)
show less...
University
Karolinska Institutet (30)
University of Gothenburg (14)
Chalmers University of Technology (8)
Royal Institute of Technology (6)
Uppsala University (3)
Lund University (3)
show more...
Umeå University (2)
Stockholm University (2)
Linköping University (2)
Södertörn University (1)
show less...
Language
English (43)
Research subject (UKÄ/SCB)
Medical and Health Sciences (25)
Social Sciences (9)
Natural sciences (1)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view