SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kirilyuk A.) "

Search: WFRF:(Kirilyuk A.)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Iacocca, Ezio, 1986, et al. (author)
  • Spin-current-mediated rapid magnon localisation and coalescence after ultrafast optical pumping of ferrimagnetic alloys
  • 2019
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Sub-picosecond magnetisation manipulation via femtosecond optical pumping has attracted wide attention ever since its original discovery in 1996. However, the spatial evolution of the magnetisation is not yet well understood, in part due to the difficulty in experimentally probing such rapid dynamics. Here, we find evidence of a universal rapid magnetic order recovery in ferrimagnets with perpendicular magnetic anisotropy via nonlinear magnon processes. We identify magnon localisation and coalescence processes, whereby localised magnetic textures nucleate and subsequently interact and grow in accordance with a power law formalism. A hydrodynamic representation of the numerical simulations indicates that the appearance of noncollinear magnetisation via optical pumping establishes exchange-mediated spin currents with an equivalent 100% spin polarised charge current density of 10 7 A cm −2 . Such large spin currents precipitate rapid recovery of magnetic order after optical pumping. The magnon processes discussed here provide new insights for the stabilization of desired meta-stable states.
  •  
2.
  • Mentink, J. H., et al. (author)
  • Ultrafast Spin Dynamics in Multisublattice Magnets
  • 2012
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 108:5, s. 057202-
  • Journal article (peer-reviewed)abstract
    • We propose a general theoretical framework for ultrafast laser-induced spin dynamics in multisublattice magnets. We distinguish relaxation of relativistic and exchange origin and show that when the former dominates, nonequivalent sublattices have distinct dynamics despite their strong exchange coupling. Even more interesting, in the exchange dominated regime sublattices can show highly counterintuitive transitions between parallel and antiparallel alignment. This allows us to explain recent experiments with antiferromagnetically coupled sublattices, and predict that such transitions are possible with ferromagnetic coupling as well. In addition, we predict that exchange relaxation enhances the demagnetization speed of both sublattices only when they are antiferromagnetically coupled.
  •  
3.
  • Mishra, K., et al. (author)
  • Ultrafast Demagnetization Control in Magnetophotonic Surface Crystals
  • 2022
  • In: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 22:23, s. 9773-80
  • Journal article (peer-reviewed)abstract
    • Magnetic memory combining plasmonics and magnetism is poised to dramatically increase the bit density and energy efficiency of light-assisted ultrafast magnetic storage, thanks to nanoplasmon-driven enhancement and confinement of light. Here we devise a new path for that, simultaneously enabling light driven bit downscaling, reduction of the required energy for magnetic memory writing, and a subtle control over the degree of demagnetization in a magnetophotonic surface crystal. It features a regular array of truncated-nanocone-shaped Au-TbCo antennas showing both localized plasmon and surface lattice resonance modes. The ultrafast magnetization dynamics of the nanoantennas show a 3-fold resonant enhancement of the demagnetization efficiency. The degree of demagnetization is further tuned by activating surface lattice modes. This reveals a platform where ultrafast demagnetization is localized at the nanoscale and its extent can be controlled at will, rendering it multistate and potentially opening up so-far-unforeseen nanomagnetic neuromorphic-like systems operating at femtosecond time scales controlled by light.
  •  
4.
  • Mishra, K., et al. (author)
  • Ultrafast demagnetization in a ferrimagnet under electromagnetic field funneling
  • 2021
  • In: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 13:46, s. 19367-19375
  • Journal article (peer-reviewed)abstract
    • The quest to improve the density, speed and energy efficiency of magnetic memory storage has led to the exploration of new ways of optically manipulating magnetism at the ultrafast time scale, in particular in ferrimagnetic alloys. While all-optical magnetization switching is well-established on the femtosecond timescale, lateral nanoscale confinement and thus the potential significant reduction of the size of the magnetic element remains an outstanding challenge. Here we employ resonant electromagnetic energy funneling through plasmon nanoantennas to influence the demagnetization dynamics of a ferrimagnetic TbCo alloy thin film. We demonstrate how Ag nanoring-shaped antennas under resonant optical femtosecond pumping reduce the overall demagnetization in the underlying films up to three times compared to non-resonant illumination. We attribute such a substantial reduction to the nanoscale confinement of the demagnetization process. This is qualitatively supported by the electromagnetic simulations that strongly evidence the resonant optical energy-funneling to the nanoscale from the nanoantennas into the ferrimagnetic film. This observation is an important step for reaching deterministic ultrafast all-optical magnetization switching at the nanoscale in such systems, opening a route to develop nanoscale ultrafast magneto-optics.
  •  
5.
  • Peters, L., et al. (author)
  • Correlation effects and orbital magnetism of Co clusters
  • 2016
  • In: PHYSICAL REVIEW B. - 2469-9950. ; 93:22
  • Journal article (peer-reviewed)abstract
    • Recent experiments on isolated Co clusters have shown huge orbital magnetic moments in comparison with their bulk and surface counterparts. These clusters hence provide the unique possibility to study the evolution of the orbital magnetic moment with respect to the cluster size and how competing interactions contribute to the quenching of orbital magnetism. We investigate here different theoretical methods to calculate the spin and orbital moments of Co clusters, and assess the performances of the methods in comparison with experiments. It is shown that density-functional theory in conventional local density or generalized gradient approximations, or even with a hybrid functional, severely underestimates the orbital moment. As natural extensions/corrections, we considered the orbital polarization correction, the LDA+U approximation as well as the LDA+DMFT method. Our theory shows that of the considered methods, only the LDA+DMFT method provides orbital moments in agreement with experiment, thus emphasizing the importance of dynamic correlations effects for determining fundamental magnetic properties of magnets in the nanosize regime.
  •  
6.
  • Razdolski, I., et al. (author)
  • Nonlocal nonlinear magneto-optical response of a magnetoplasmonic crystal
  • 2013
  • In: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 88:7, s. 075436-
  • Journal article (peer-reviewed)abstract
    • Surface plasma resonance (SPR) excitation in a Co-based two-dimensional magnetoplasmonic crystal was found to strongly enhance the second-harmonic generation (SHG) efficiency. Large changes in the phase shift between magnetic and nonmagnetic SHG contributions were observed in the transversal Kerr effect as a function of the incidence angle. The activation of a nonlocal quadrupole mechanism of the magnetic SHG due to the SPR excitation was found to lead to an unusual phase behavior in the vicinity of the resonance.
  •  
7.
  • Bossini, D., et al. (author)
  • Magnetoelectrics and multiferroics : theory, synthesis, characterisation, preliminary results and perspectives for all-optical manipulations
  • 2023
  • In: Journal of Physics D. - : IOP Publishing. - 0022-3727 .- 1361-6463. ; 56:27
  • Research review (peer-reviewed)abstract
    • Solid state compounds exhibiting multiple and coupled macroscopic orders, named multiferroics, represent a challenge for both theoretical and experimental modern condensed-matter physics. Spins and the electric polarisation in conventional magnetic and ferroelectric materials can be manipulated on their fundamental timescales, by means of femtosecond laser pulses. In view of the resounding success and popularity of the all-optical approach, it is only natural to wonder about the application of this scheme to study the intrinsic coupling between spins and charges in multiferroics. Deeply fundamental questions arise: can ultrashort laser pulses deterministically activate, enhance or suppress the magnetoelectric coupling on the femtosecond timescale? Can these processes be triggered in a fully coherent fashion, thus being unrestrained by any thermal load? Which mechanism of spin-charge coupling is most favourable to overcome these overarching and daunting challenges? This problem is interdisciplinary in nature, requiring contributions from materials science and condensed matter physics from both theoretical and experimental perspectives. High-quality materials suitable for optical investigations have to be identified, synthetized and characterised. General and valid models offer then a guide to the plethora of possible light-induced processes, resulting in the desired ultrafast multiferroic manipulations. Finally, healthy experimental schemes, able to unambiguously track the ultrafast dynamics of either the ferroelectric or the magnetic order parameter have to be developed and implemented. Our motivation to write this review is to lay a broad and multidisciplinary foundation, which may be employed as a starting point for non-equilibrium approaches to the manipulation of the multiferroicity on the femtosecond timescale. This was also one of the main goals of the COST Action MAGNETOFON, whose network constitutes the core of the authors of this review. The present work thus represents a part of the scientific legacy of MAGNETOFON itself.
  •  
8.
  • Peters, L., et al. (author)
  • Treatment of 4 f states of the rare earths : The case study of TbN
  • 2014
  • In: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 89:20, s. 205109-
  • Journal article (peer-reviewed)abstract
    • The lattice constant, bulk modulus, and shear constant of TbN are calculated by means of density functional theory (DFT) in the local density approximation (LDA) and generalized gradient approximation (GGA), with 4f states treated as valence electrons or core electrons. In addition, local Coulomb repulsions U are treated both statically as in the LDA+U approach and dynamically as in the dynamical mean-field theory in the Hubbard-I approximation. It is shown that all methods, except DFT-LDA with 4f electrons treated as either valence states, produce lattice constants and bulk moduli in good agreement with experiment. In the LDA+U approach multiple minima are found, and we focus on the competition between a state with cubic symmetry and a state obtained from atomic Hund's rules. We find the state with cubic symmetry to be 0.59 eV lower in energy than the Hund's rules state, while the opposite was obtained in previous literature. The shear constant is shown to be rather sensitive to the theoretical method used, and the Hund's rules state obtained in LDA+U is found to be unstable towards tetragonal shear. As to the magnetism, we find that the calculation based on the Hubbard-I approximation reproduces observations with the best accuracy. Finally, the spectral properties of TbN are discussed, together with the general applicability of the different methods in describing rare-earth elements and compounds.
  •  
9.
  • Peters, L., et al. (author)
  • Valence and spectral properties of rare-earth clusters
  • 2015
  • In: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 92:3
  • Journal article (peer-reviewed)abstract
    • The rare earths are known to have intriguing changes of the valence, depending on the chemical surrounding or geometry. Here, we aim at predicting the transition of valence when passing from the atomic divalent limit to the bulk trivalent limit. This transition is analyzed by addressing clusters of various size for selected rare-earth elements, i.e., Sm, Tb, and Tm, via a theoretical treatment that combines density functional theory with atomic multiplet theory. Our results show that Tm clusters change from pure divalent to pure trivalent at a size of six atoms, while Tb clusters are already divalent for two atoms and stay so until eight atoms and the bulk limit. Instead, Sm clusters are respectively purely divalent up to eight atoms. For larger Sm clusters, a transition to a trivalent configuration is expected and likely accompanied by a regime of mixed valence. The valence of all rare-earth clusters, as a function of size, is predicted from the interpolation of our calculated results. These predictions are argued to be best investigated by spectroscopic measurements. To ease experimental analysis, we provide theoretical spectra, based on dynamical mean-field theory in the Hubbard I approximation.
  •  
10.
  • Wikberg, J. M., et al. (author)
  • Evolving Magnetization Dynamics in Mn3-xGa
  • 2015
  • In: Springer Proceedings in Physics. - Cham : Springer International Publishing. - 0930-8989. ; 159, s. 23-25, s. 23-25
  • Conference paper (peer-reviewed)abstract
    • Magnetic materials with high magnetic coercivity (Hc), magnetic anisotropy (Ku) and low Gilbert damping (α) are of great importance for future spintronics devices. For instance, for spin-transfer-torque (STT) memory devices low α and high Ku are desired. Such a combination of material properties includes a built in contradiction since both Ku and α are dependent on the spin-orbit interaction (SO); a high Ku material is expected to have a high α. However, recent experimental investigations of Mn3-xGa, a material exhibiting high Curie temperature (Tc) > 700 K and (out-of-plane) perpendicular anisotropy, have shown that such a contradictorily low α and high Ku material exists.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view