SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Klingenberg Sarah) "

Search: WFRF:(Klingenberg Sarah)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bausch, Birke, et al. (author)
  • Germline NF1 mutational spectra and loss-of-heterozygosity analyses in patients with pheochromocytoma and neurofibromatosis type 1.
  • 2007
  • In: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 92:7, s. 2784-92
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Neurofibromatosis type 1 (NF1) is a pheochromocytoma-associated syndrome. Because of the low prevalence of pheochromocytoma in NF1, we ascertained subjects by pheochromocytoma that also had NF1 in the hope of describing the germline NF1 mutational spectra of NF1-related pheochromocytoma.MATERIALS AND METHODS: An international registry for NF1-pheochromocytomas was established. Mutation scanning was performed using denaturing HPLC for intragenic variation and quantitative PCR for large deletions. Loss-of-heterozygosity analysis using markers in and around NF1 was performed.RESULTS: There were 37 eligible subjects (ages 14-70 yr). Of 21 patients with corresponding tumor available, 67% showed somatic loss of the nonmutated allele at the NF1 locus vs. 0 of 12 sporadic tumors (P = 0.0002). Overall, 86% of the 37 patients had exonic or splice site mutations, 14% large deletions or duplications; 79% of the mutations are novel. The cysteine-serine rich domain (CSR) was affected in 35% but the RAS GTPase activating protein domain (RGD) in only 13%. There did not appear to be an association between any clinical features, particularly pheochromocytoma presentation and severity, and NF1 mutation genotype.CONCLUSIONS: The germline NF1 mutational spectra comprise intragenic mutations and deletions in individuals with pheochromocytoma and NF1. NF1 mutations tended to cluster in the CSR over the RAS-GAP domain, suggesting that CSR plays a more prominent role in individuals with NF1-pheochromocytoma than in NF1 individuals without this tumor. Loss-of-heterozygosity of NF1 markers in NF1-related pheochromocytoma was significantly more frequent than in sporadic pheochromocytoma, providing further molecular evidence that pheochromocytoma is a true component of NF1.
  •  
2.
  • Juul, Sophie, et al. (author)
  • Interventions for treatment of COVID-19 : A living systematic review with meta-analyses and trial sequential analyses (The LIVING Project)
  • 2020
  • In: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 17:9
  • Journal article (peer-reviewed)abstract
    • Background Coronavirus disease 2019 (COVID-19) is a rapidly spreading disease that has caused extensive burden to individuals, families, countries, and the world. Effective treatments of COVID-19 are urgently needed. Methods and findings This is the first edition of a living systematic review of randomized clinical trials comparing the effects of all treatment interventions for participants in all age groups with COVID-19. We planned to conduct aggregate data meta-analyses, trial sequential analyses, network meta-analysis, and individual patient data meta-analyses. Our systematic review is based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) and Cochrane guidelines, and our 8-step procedure for better validation of clinical significance of meta-analysis results. We performed both fixed-effect and random-effects meta-analyses. Primary outcomes were all-cause mortality and serious adverse events. Secondary outcomes were admission to intensive care, mechanical ventilation, renal replacement therapy, quality of life, and nonserious adverse events. We used Grading of Recommendations Assessment, Development and Evaluation (GRADE) to assess the certainty of evidence. We searched relevant databases and websites for published and unpublished trials until August 7, 2020. Two reviewers independently extracted data and assessed trial methodology. We included 33 randomized clinical trials enrolling a total of 13,312 participants. All trials were at overall high risk of bias. We identified one trial randomizing 6,425 participants to dexamethasone versus standard care. This trial showed evidence of a beneficial effect of dexamethasone on all-cause mortality (rate ratio 0.83; 95% confidence interval [CI] 0.75-0.93; p < 0.001; low certainty) and on mechanical ventilation (risk ratio [RR] 0.77; 95% CI 0.62-0.95; p = 0.021; low certainty). It was possible to perform meta-analysis of 10 comparisons. Meta-analysis showed no evidence of a difference between remdesivir versus placebo on all-cause mortality (RR 0.74; 95% CI 0.40-1.37; p = 0.34, I2 = 58%; 2 trials; very low certainty) or nonserious adverse events (RR 0.94; 95% CI 0.80-1.11; p = 0.48, I2 = 29%; 2 trials; low certainty). Meta-analysis showed evidence of a beneficial effect of remdesivir versus placebo on serious adverse events (RR 0.77; 95% CI 0.63-0.94; p = 0.009, I2 = 0%; 2 trials; very low certainty) mainly driven by respiratory failure in one trial. Meta-analyses and trial sequential analyses showed that we could exclude the possibility that hydroxychloroquine versus standard care reduced the risk of all-cause mortality (RR 1.07; 95% CI 0.97-1.19; p = 0.17; I2 = 0%; 7 trials; low certainty) and serious adverse events (RR 1.07; 95% CI 0.96-1.18; p = 0.21; I2 = 0%; 7 trials; low certainty) by 20% or more, and meta-analysis showed evidence of a harmful effect on nonserious adverse events (RR 2.40; 95% CI 2.01-2.87; p < 0.00001; I2 = 90%; 6 trials; very low certainty). Meta-analysis showed no evidence of a difference between lopinavir-ritonavir versus standard care on serious adverse events (RR 0.64; 95% CI 0.39-1.04; p = 0.07, I2 = 0%; 2 trials; very low certainty) or nonserious adverse events (RR 1.14; 95% CI 0.85-1.53; p = 0.38, I2 = 75%; 2 trials; very low certainty). Meta-analysis showed no evidence of a difference between convalescent plasma versus standard care on all-cause mortality (RR 0.60; 95% CI 0.33-1.10; p = 0.10, I2 = 0%; 2 trials; very low certainty). Five single trials showed statistically significant results but were underpowered to confirm or reject realistic intervention effects. None of the remaining trials showed evidence of a difference on our predefined outcomes. Because of the lack of relevant data, it was not possible to perform other meta-analyses, network meta-analysis, or individual patient data meta-analyses. The main limitation of this living review is the paucity of data currently available. Furthermore, the included trials were all at risks of systematic errors and random errors. Conclusions Our results show that dexamethasone and remdesivir might be beneficial for COVID-19 patients, but the certainty of the evidence was low to very low, so more trials are needed. We can exclude the possibility of hydroxychloroquine versus standard care reducing the risk of death and serious adverse events by 20% or more. Otherwise, no evidence-based treatment for COVID-19 currently exists. This review will continuously inform best practice in treatment and clinical research of COVID-19.
  •  
3.
  • Juul, Sophie, et al. (author)
  • Interventions for treatment of COVID-19 : A protocol for a living systematic review with network meta-analysis including individual patient data (The LIVING Project)
  • 2020
  • In: Systematic Reviews. - : Springer Science and Business Media LLC. - 2046-4053. ; 9:1
  • Research review (peer-reviewed)abstract
    • Background: COVID-19 is a rapidly spreading virus infection that has quickly caused extensive burden to individual, families, countries, and the globe. No intervention has yet been proven effective for the treatment of COVID-19. Some randomized clinical trials assessing the effects of different drugs have been published, and more are currently underway. There is an urgent need for a living, dynamic systematic review that continuously evaluates the beneficial and harmful effects of all available interventions for COVID-19. Methods/design: We will conduct a living systematic review based on searches of major medical databases (e.g., MEDLINE, EMBASE, CENTRAL) and clinical trial registries from their inception onwards to identify relevant randomized clinical trials. We will update the literature search once a week to continuously assess if new evidence is available. Two review authors will independently extract data and perform risk of bias assessment. We will include randomized clinical trials comparing any intervention for the treatment of COVID-19 (e.g., pharmacological interventions, fluid therapy, invasive or noninvasive ventilation, or similar interventions) with any comparator (e.g., an "active" comparator, standard care, placebo, no intervention, or "active placebo") for participants in all age groups with a diagnosis of COVID-19. Primary outcomes will be all-cause mortality and serious adverse events. Secondary outcomes will be admission to intensive care, mechanical ventilation, renal replacement therapy, quality of life, and non-serious adverse events. The living systematic review will include aggregate data meta-analyses, Trial Sequential Analyses, network meta-analysis, and individual patient data meta-analyses. Risk of bias will be assessed with domains, an eight-step procedure will be used to assess if the thresholds for clinical significance are crossed, and the certainty of the evidence will be assessed by Grading of Recommendations, Assessment, Development and Evaluations (GRADE). Discussion: COVID-19 has become a pandemic with substantial mortality. A living systematic review evaluating the beneficial and harmful effects of pharmacological and other interventions is urgently needed. This review will continuously inform best practice in treatment and clinical research of this highly prevalent disease.
  •  
4.
  • Juul, Sophie, et al. (author)
  • Interventions for treatment of COVID-19 : Second edition of a living systematic review with meta-analyses and trial sequential analyses (The LIVING Project)
  • 2021
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 16:3 March
  • Journal article (peer-reviewed)abstract
    • Background COVID-19 is a rapidly spreading disease that has caused extensive burden to individuals, families, countries, and the world. Effective treatments of COVID-19 are urgently needed. This is the second edition of a living systematic review of randomized clinical trials assessing the effects of all treatment interventions for participants in all age groups with COVID-19. Methods and findings We planned to conduct aggregate data meta-analyses, trial sequential analyses, network meta-analysis, and individual patient data meta-analyses. Our systematic review was based on PRISMA and Cochrane guidelines, and our eight-step procedure for better validation of clinical significance of meta-analysis results. We performed both fixed-effect and random-effects meta-analyses. Primary outcomes were all-cause mortality and serious adverse events. Secondary outcomes were admission to intensive care, mechanical ventilation, renal replacement therapy, quality of life, and non-serious adverse events. According to the number of outcome comparisons, we adjusted our threshold for significance to p = 0.033. We used GRADE to assess the certainty of evidence. We searched relevant databases and websites for published and unpublished trials until November 2, 2020. Two reviewers independently extracted data and assessed trial methodology. We included 82 randomized clinical trials enrolling a total of 40,249 participants. 81 out of 82 trials were at overall high risk of bias. Meta-analyses showed no evidence of a difference between corticosteroids versus tocilizumab might reduce the risk of serious adverse events and mechanical ventilation; and that bromhexine might reduce the risk of non-serious adverse events. More trials with low risks of bias and random errors are urgently needed. This review will continuously inform best practice in treatment and clinical research of COVID-19. control on all-cause mortality (risk ratio [RR] 0.89; 95% confidence interval [CI] 0.79 to 1.00; p = 0.05; I2 = 23.1%; eight trials; very low certainty), on serious adverse events (RR 0.89; 95% CI 0.80 to 0.99; p = 0.04; I2 = 39.1%; eight trials; very low certainty), and on mechanical ventilation (RR 0.86; 95% CI 0.55 to 1.33; p = 0.49; I2 = 55.3%; two trials; very low certainty). The fixed-effect meta-analyses showed indications of beneficial effects. Trial sequential analyses showed that the required information size for all three analyses was not reached. Meta-analysis (RR 0.93; 95% CI 0.82 to 1.07; p = 0.31; I2 = 0%; four trials; moderate certainty) and trial sequential analysis (boundary for futility crossed) showed that we could reject that remdesivir versus control reduced the risk of death by 20%. Meta-analysis (RR 0.82; 95% CI 0.68 to 1.00; p = 0.05; I2 = 38.9%; four trials; very low certainty) and trial sequential analysis (required information size not reached) showed no evidence of difference between remdesivir versus control on serious adverse events. Fixed-effect meta-analysis showed indications of a beneficial effect of remdesivir on serious adverse events. Meta-analysis (RR 0.40; 95% CI 0.19 to 0.87; p = 0.02; I2 = 0%; two trials; very low certainty) showed evidence of a beneficial effect of intravenous immunoglobulin versus control on all-cause mortality, but trial sequential analysis (required information size not reached) showed that the result was severely underpowered to confirm or reject realistic intervention effects. Meta-analysis (RR 0.63; 95% CI 0.35 to 1.14; p = 0.12; I2 = 77.4%; five trials; very low certainty) and trial sequential analysis (required information size not reached) showed no evidence of a difference between tocilizumab versus control on serious adverse events. Fixed-effect meta-analysis showed indications of a beneficial effect of tocilizumab on serious adverse events. Meta-analysis (RR 0.70; 95% CI 0.51 to 0.96; p = 0.02; I2 = 0%; three trials; very low certainty) showed evidence of a beneficial effect of tocilizumab versus control on mechanical ventilation, but trial sequential analysis (required information size not reached) showed that the result was severely underpowered to confirm of reject realistic intervention effects. Meta-analysis (RR 0.32; 95% CI 0.15 to 0.69; p < 0.00; I2 = 0%; two trials; very low certainty) showed evidence of a beneficial effect of bromhexine versus standard care on non-serious adverse events, but trial sequential analysis (required information size not reached) showed that the result was severely underpowered to confirm or reject realistic intervention effects. Meta-analyses and trial sequential analyses (boundary for futility crossed) showed that we could reject that hydroxychloroquine versus control reduced the risk of death and serious adverse events by 20%. Meta-analyses and trial sequential analyses (boundary for futility crossed) showed that we could reject that lopinavir-ritonavir versus control reduced the risk of death, serious adverse events, and mechanical ventilation by 20%. All remaining outcome comparisons showed that we did not have enough information to confirm or reject realistic intervention effects. Nine single trials showed statistically significant results on our outcomes, but were underpowered to confirm or reject realistic intervention effects. Due to lack of data, it was not relevant to perform network meta-analysis or possible to perform individual patient data meta-analyses. Conclusions No evidence-based treatment for COVID-19 currently exists. Very low certainty evidence indicates that corticosteroids might reduce the risk of death, serious adverse events, and mechanical ventilation; that remdesivir might reduce the risk of serious adverse events; that intravenous immunoglobin might reduce the risk of death and serious adverse events; that
  •  
5.
  • Nguyen, Thanh N, et al. (author)
  • Global Impact of the COVID-19 Pandemic on Stroke Volumes and Cerebrovascular Events: A 1-Year Follow-up.
  • 2023
  • In: Neurology. - 1526-632X. ; 100:4
  • Journal article (peer-reviewed)abstract
    • Declines in stroke admission, IV thrombolysis (IVT), and mechanical thrombectomy volumes were reported during the first wave of the COVID-19 pandemic. There is a paucity of data on the longer-term effect of the pandemic on stroke volumes over the course of a year and through the second wave of the pandemic. We sought to measure the effect of the COVID-19 pandemic on the volumes of stroke admissions, intracranial hemorrhage (ICH), IVT, and mechanical thrombectomy over a 1-year period at the onset of the pandemic (March 1, 2020, to February 28, 2021) compared with the immediately preceding year (March 1, 2019, to February 29, 2020).We conducted a longitudinal retrospective study across 6 continents, 56 countries, and 275 stroke centers. We collected volume data for COVID-19 admissions and 4 stroke metrics: ischemic stroke admissions, ICH admissions, IVT treatments, and mechanical thrombectomy procedures. Diagnoses were identified by their ICD-10 codes or classifications in stroke databases.There were 148,895 stroke admissions in the 1 year immediately before compared with 138,453 admissions during the 1-year pandemic, representing a 7% decline (95% CI [95% CI 7.1-6.9]; p < 0.0001). ICH volumes declined from 29,585 to 28,156 (4.8% [5.1-4.6]; p < 0.0001) and IVT volume from 24,584 to 23,077 (6.1% [6.4-5.8]; p < 0.0001). Larger declines were observed at high-volume compared with low-volume centers (all p < 0.0001). There was no significant change in mechanical thrombectomy volumes (0.7% [0.6-0.9]; p = 0.49). Stroke was diagnosed in 1.3% [1.31-1.38] of 406,792 COVID-19 hospitalizations. SARS-CoV-2 infection was present in 2.9% ([2.82-2.97], 5,656/195,539) of all stroke hospitalizations.There was a global decline and shift to lower-volume centers of stroke admission volumes, ICH volumes, and IVT volumes during the 1st year of the COVID-19 pandemic compared with the prior year. Mechanical thrombectomy volumes were preserved. These results suggest preservation in the stroke care of higher severity of disease through the first pandemic year.This study is registered under NCT04934020.
  •  
6.
  • Petersen, Johanne Juul, et al. (author)
  • Drug interventions for prevention of COVID-19 progression to severe disease in outpatients : a systematic review with meta-analyses and trial sequential analyses (The LIVING Project)
  • 2023
  • In: BMJ Open. - 2044-6055. ; 13:6
  • Research review (peer-reviewed)abstract
    • Objectives To assess the effects of interventions authorised by the European Medicines Agency (EMA) or the US Food and Drug Administration (FDA) for prevention of COVID-19 progression to severe disease in outpatients. Setting Outpatient treatment. Participants Participants with a diagnosis of COVID-19 and the associated SARS-CoV-2 virus irrespective of age, sex and comorbidities. Interventions Drug interventions authorised by EMA or FDA. Primary outcome measures Primary outcomes were all-cause mortality and serious adverse events. Results We included 17 clinical trials randomising 16 257 participants to 8 different interventions authorised by EMA or FDA. 15/17 of the included trials (88.2%) were assessed at high risk of bias. Only molnupiravir and ritonavir-boosted nirmatrelvir seemed to improve both our primary outcomes. Meta-analyses showed that molnupiravir reduced the risk of death (relative risk (RR) 0.11, 95% CI 0.02 to 0.64; p=0.0145, 2 trials; very low certainty of evidence) and serious adverse events (RR 0.63, 95% CI 0.47 to 0.84; p=0.0018, 5 trials; very low certainty of evidence). Fisher's exact test showed that ritonavir-boosted nirmatrelvir reduced the risk of death (p=0.0002, 1 trial; very low certainty of evidence) and serious adverse events (p<0.0001, 1 trial; very low certainty of evidence) in 1 trial including 2246 patients, while another trial including 1140 patients reported 0 deaths in both groups. Conclusions The certainty of the evidence was very low, but, from the results of this study, molnupiravir showed the most consistent benefit and ranked highest among the approved interventions for prevention of COVID-19 progression to severe disease in outpatients. The lack of certain evidence should be considered when treating patients with COVID-19 for prevention of disease progression. PROSPERO registration number CRD42020178787.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view