SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kochman R.) "

Search: WFRF:(Kochman R.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Niederberger, C., et al. (author)
  • Forty years of IVF
  • 2018
  • In: Fertility and Sterility. - : Elsevier BV. - 0015-0282. ; 110:2
  • Journal article (peer-reviewed)abstract
    • This monograph, written by the pioneers of IVF and reproductive medicine, celebrates the history, achievements, and medical advancements made over the last 40 years in this rapidly growing field.
  •  
2.
  • Bittmann, Simon F., et al. (author)
  • Ultrafast ring-opening and solvent-dependent product relaxation of photochromic spironaphthopyran
  • 2019
  • In: Physical Chemistry, Chemical Physics - PCCP. - : ROYAL SOC CHEMISTRY. - 1463-9076 .- 1463-9084. ; 21:33, s. 18119-18127
  • Journal article (peer-reviewed)abstract
    • The ultrafast dynamics of unsubstituted spironaphthopyran (SNP) were investigated using femtosecond transient UV and visible absorption spectroscopy in three different solvents and by semi-classical nuclear dynamics simulations. The primary ring-opening of the pyran unit was found to occur in 300 fs yielding a non-planar intermediate in the first singlet excited state (S-1). Subsequent planarisation and relaxation to the product ground state proceed through barrier crossing on the S-1 potential energy surface (PES) and take place within 1.1 ps after excitation. Simulations show that more than 90% of the trajectories involving C-O bond elongation lead to the planar, open-ring product, while relaxation back to the S-0 of the closed-ring form is accompanied by C-N elongation. All ensuing spectral dynamics are ascribed to vibrational relaxation and thermalisation of the product with a time constant of 13 ps. The latter shows dependency on characteristics of the solvent with solvent relaxation kinetics playing a role.
  •  
3.
  • Dsouza, Raison, et al. (author)
  • Oscillatory Photoelectron Signal of N-Methylmorpholine as a Test Case for the Algebraic-Diagrammatic Construction Method of Second Order
  • 2018
  • In: Journal of Physical Chemistry A. - : AMER CHEMICAL SOC. - 1089-5639 .- 1520-5215. ; 122:50, s. 9688-9700
  • Journal article (peer-reviewed)abstract
    • Motivated by recent progress in the application of time-resolved photoelectron spectroscopy (TRPES) to molecular Rydberg states, we report herein a detailed assessment of the performance of the second-order algebraic diagrammatic construction (ADC(2)) method in the simulation of their TRPES spectra. As the test case, we employ the tertiary aliphatic amine N-methylmorpholine (NMM), which is notable for the fact that the signal of its 3s state exhibits long-lived oscillations along the electron binding energy axis. The relaxation process of photoexcited NMM is simulated via the Born-Oppenheimer molecular dynamics method, and the resulting TRPES spectrum is generated on the basis of ionization energies and approximate Dyson orbital norms calculated with the continuum orbital technique. On the whole, the simulated TRPES spectrum achieves satisfactory agreement with experiment, which suggests that the ADC(2) method provides a realistic description of the potential energy surfaces of the relevant excited and ionized states. In particular, the simulations reproduce the fine oscillatory structure of the signal of the 3s state, and provide evidence to the effect that it results from a coherent vibrational wavepacket evolving along the deformation modes of the six-membered ring. However, it is found that ADC(2) underestimates electron binding energies by up to a few tenths of an electronvolt. The case of NMM demonstrates the usefulness of ADC(2) as a tool to aid the interpretation of the TRPES spectra of large organic molecules.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view