SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kodde Andrea) "

Search: WFRF:(Kodde Andrea)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hamer, Henrike M., et al. (author)
  • Butyrate enemas do not affect human colonic MUC2 and TFF3 expression
  • 2010
  • In: European Journal of Gastroenterology and Hepathology. - 0954-691X .- 1473-5687. ; 22:9, s. 1134-1140
  • Journal article (peer-reviewed)abstract
    • Introduction The colonic mucus layer plays an important role in the protection of the intestinal epithelium and mainly consists of mucin glycoproteins (primarily MUC2 in the colon) trefoil factor 3 (TFF3) and secretory IgA. Butyrate is a major end product of fermentation of dietary fibres and is associated with beneficial effects on colonic health. Earlier in-vitro and animal studies showed that butyrate modulates MUC2 and TFF3 expression and mucin secretion, although data from human studies are not yet available. Methods Sixteen healthy volunteers and 35 ulcerative colitis (UC) patients in clinical remission self-administered a 60 ml rectal enema containing 100 mmol/l butyrate or placebo once daily for 2 and 3 weeks, respectively. After each treatment, biopsies were taken from the distal sigmoid for quantitative RT-PCR and immunohistochemical analysis of MUC2 and TFF3. In addition, mucosal sections were stained with high iron diamine-alcian blue to distinguish between sialomucins and sulphomucins. To analyse total mucin secretion and secretory IgA concentrations, 24 h faeces were collected during the day before the endoscopic examination. Results The butyrate intervention did not significantly modulate the expression of MUC2 ( fold change: 1.04 and 1.05 in healthy volunteers and ulcerative colitis patients, respectively) or TFF3 (fold change: 0.91 and 0.94 in healthy volunteers and UC patients, respectively). Furthermore, the percentage of sialomucins, mucus secretion and secretory IgA concentrations were not affected by the butyrate intervention in both the groups. Conclusion Butyrate exposure in healthy volunteers and UC patients in remission did not affect the measured parameters of the colonic mucus layer. Eur J Gastroenterol Hepatol 22: 1134-1140 (C) 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins.
  •  
2.
  • Hamer, Henrike M., et al. (author)
  • Butyrate modulates oxidative stress in the colonic mucosa of healthy humans
  • 2009
  • In: Clinical Nutrition. - Amsterdam : Churchill Livingstone. - 0261-5614 .- 1532-1983. ; 28:1, s. 88-93
  • Journal article (peer-reviewed)abstract
    • BACKGROUND & AIMS: Butyrate, a short-chain fatty acid produced by colonic microbial fermentation of undigested carbohydrates, has been implicated in the maintenance of colonic health. This study evaluates whether butyrate plays a role in oxidative stress in the healthy colonic mucosa. METHODS: A randomized, double blind, cross-over study with 16 healthy volunteers was performed. Treatments consisted of daily rectal administration of a 60 ml enema containing 100 mM sodium butyrate or saline for 2 weeks. After each treatment, a blood sample was taken and mucosal biopsies were obtained from the sigmoid colon. In biopsies, the trolox equivalent antioxidant capacity, activity of glutathione-S-transferase, concentration of uric acid, glutathione (GSH), glutathione disulfide and malondialdehyde, and expression of genes involved in GSH and uric acid metabolism was determined. Secondary outcome parameters were CRP, calprotectin and intestinal fatty acid binding protein in plasma and histological inflammatory scores. RESULTS: Butyrate treatment resulted in significantly higher GSH (p<0.05) and lower uric acid (p<0.01) concentrations compared to placebo. Changes in GSH and uric acid were accompanied by increased and decreased expression, respectively, of their rate limiting enzymes determined by RT-PCR. No significant differences were found in other parameters. CONCLUSIONS: This study demonstrated that butyrate is able to beneficially affect oxidative stress in the healthy human colon.
  •  
3.
  • Troost, Freddy J., et al. (author)
  • Identification of the transcriptional response of human intestinal mucosa to Lactobacillus plantarum WCFS1 in vivo
  • 2008
  • In: BMC Genomics. - London : BioMed Central. - 1471-2164. ; 9, s. 374-
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: There is limited knowledge on the extent and dynamics of the mucosal response to commensal and probiotic species in the human intestinal lumen. This study aimed to identify the acute, time-dependent responses of intestinal mucosa to commensal Lactobacillus plantarum WCFS1 in vivo in two placebo-controlled human intervention studies in healthy volunteers. Transcriptional changes in duodenal mucosa upon continuous intraduodenal infusion of L. plantarum WCFS1 for one- and six h, respectively, were studied using oro- and nasogastric intubations with dedicated orogastric catheters and tissue sampling by standard flexible gastroduodenoscopy. RESULTS: One- and six-h exposure of small intestinal mucosa to L. plantarum WCFS1 induced differential expression of 669 and 424 gene reporters, respectively. While short-term exposure to L. plantarum WCFS1 inhibited fatty acid metabolism and cell cycle progression, cells switched to a more proliferative phase after prolonged exposure with an overall expression profile characterized by upregulation of genes involved in lipid metabolism, cellular growth and development. Cell death and immune responses were triggered, but cell death-executing genes or inflammatory signals were not expressed. Proteome analysis showed differential expression of several proteins. Only the microsomal protein 'microsomal triglyceride transfer protein' was regulated on both the transcriptional and the protein level in all subjects. CONCLUSION: Overall, this study showed that intestinal exposure to L. plantarum WCFS1 induced consistent, time-dependent transcriptional responses in healthy intestinal mucosa. This extensive exploration of the human response to L. plantarum WCFS1 could eventually provide molecular support for specific or probiotic activity of this strain or species, and exemplifies the strength of the applied technology to identify the potential bio-activity of microbes in the human intestine.
  •  
4.
  • Vanhoutvin, Steven A. L. W., et al. (author)
  • Butyrate-induced transcriptional changes in human colonic mucosa
  • 2009
  • In: PLoS one. - : Public Library of Science (PLoS). - 1932-6203. ; 4:8, s. e6759-
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Fermentation of dietary fiber in the colon results in the production of short chain fatty acids (mainly propionate, butyrate and acetate). Butyrate modulates a wide range of processes, but its mechanism of action is mostly unknown. This study aimed to determine the effects of butyrate on the transcriptional regulation of human colonic mucosa in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Five hundred genes were found to be differentially expressed after a two week daily butyrate administration with enemas. Pathway analysis showed that the butyrate intervention mainly resulted in an increased transcriptional regulation of the pathways representing fatty acid oxidation, electron transport chain and oxidative stress. In addition, several genes associated with epithelial integrity and apoptosis, were found to be differentially expressed after the butyrate intervention. CONCLUSIONS/SIGNIFICANCE: Colonic administration of butyrate in concentrations that can be achieved by consumption of a high-fiber diet enhances the maintenance of colonic homeostasis in healthy subjects, by regulating fatty acid metabolism, electron transport and oxidative stress pathways on the transcriptional level and provide for the first time, detailed molecular insight in the transcriptional response of gut mucosa to butyrate.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view