SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Koerstgens Volker) "

Search: WFRF:(Koerstgens Volker)

  • Result 1-10 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chen, Qing, et al. (author)
  • Layer-by-Layer Spray-Coating of Cellulose Nanofibrils and Silver Nanoparticles for Hydrophilic Interfaces
  • 2021
  • In: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 4:1, s. 503-513
  • Journal article (peer-reviewed)abstract
    • Silver nanoparticles (AgNPs) and AgNP-based composite materials have attracted growing interest due to their structure-dependent optical, electrical, catalytic, and stimuli-responsive properties. For practical applications, polymeric materials are often combined with AgNPs to provide flexibility and offer a scaffold for homogenous distribution of the AgNPs. However, the control over the assembly process of AgNPs on polymeric substrates remains a big challenge. Herein, we report the fabrication of AgNP/cellulose nanofibril (CNF) thin films via layer-by-layer (LBL) spray-coating. The morphology and self-assembly of AgNPs with increasing number of spray cycles are characterized by atomic force microscopy (AFM), grazing-incidence small-angle X-ray scattering (GISAXS), and grazing-incidence wide-angle X-ray scattering (GIWAXS). We deduce that an individual AgNP (radius = 15 +/- 3 nm) is composed of multiple nanocrystallites (diameter = 2.4 +/- 0.9 nm). Our results suggest that AgNPs are assembled into large agglomerates on SiO2 substrates during spray-coating, which is disadvantageous for AgNP functionalization. However, the incorporation of CNF substrates contributes to a more uniform distribution of AgNP agglomerates and individual AgNPs by its network structure and by absorbing the partially dissolved AgNP agglomerates. Furthermore, we demonstrate that the spray-coating of the AgNP/CNF mixture results in similar topography and agglomeration patterns of AgNPs compared to depositing AgNPs onto a precoated CNF thin film. Contact-angle measurements and UV/vis spectroscopy suggest that the deposition of AgNPs onto or within CNFs could increase the hydrophilicity of AgNP-containing surfaces and the localized surface plasmon resonance (LSPR) intensity of AgNP compared to AgNPs sprayed on SiO(2 )substrates, suggesting their potential applications in antifouling coatings or label-free biosensors. Thereby, our approach provides a platform for a facile and scalable production of AgNP/CNF films with a low agglomeration rate by two different methods as follows: (1) multistep layer-by-layer (LBL) spray-coating and (2) direct spray-coating of the AgNP/CNF mixture. We also demonstrate the ability of CNFs as a flexible framework for directing the uniform assembly of AgNPs with tailorable wettability and plasmonic properties.
  •  
2.
  • Chen, Wei, et al. (author)
  • Colloidal PbS quantum dot stacking kinetics during deposition via printing
  • 2020
  • In: Nanoscale Horizons. - : Royal Society of Chemistry (RSC). - 2055-6764 .- 2055-6756. ; 5:5, s. 880-885
  • Journal article (peer-reviewed)abstract
    • Colloidal PbS quantum dots (QDs) are attractive for solution-processed thin-film optoelectronic applications. In particular, directly achieving QD thin-films by printing is a very promising method for low-cost and large-scale fabrication. The kinetics of QD particles during the deposition process play an important role in the QD film quality and their respective optoelectronic performance. In this work, the particle self-organization behavior of small-sized QDs with an average diameter of 2.88 +/- 0.36 nm is investigated for the first time in situ during printing by grazing-incidence small-angle X-ray scattering (GISAXS). The time-dependent changes in peak intensities suggest that the structure formation and phase transition of QD films happen within 30 seconds. The stacking of QDs is initialized by a templating effect, and a face-centered cubic (FCC) film forms in which a superlattice distortion is also found. A body-centered cubic nested FCC stacking is the final QD assembly layout. The small size of the inorganic QDs and the ligand collapse during the solvent evaporation can well explain this stacking behavior. These results provide important fundamental understanding of structure formation of small-sized QD based films prepared via large-scale deposition with printing with a slot die coater.
  •  
3.
  • Hohn, Nuri, et al. (author)
  • Amphiphilic diblock copolymer-mediated structure control in nanoporous germanium-based thin films
  • 2019
  • In: Nanoscale. - : ROYAL SOC CHEMISTRY. - 2040-3364 .- 2040-3372. ; 11:4, s. 2048-2055
  • Journal article (peer-reviewed)abstract
    • Fabrication of porous, foam-like germanium-based (Ge-based) nanostructures is achieved with the use of the amphiphilic diblock copolymer polystyrene-b-polyethylene oxide as structure directing agent. Basic concepts of block copolymer assisted sol-gel synthesis are successfully realized based on the [Ge-9](4-) Zintl clusters as a precursor for Ge-based thin films. Material/elemental composition and crystalline Ge-based phases are investigated via X-ray photoelectron spectroscopy and X-ray diffraction measurements, respectively. Poor-good solvent pair induced phase separation leads to pore sizes in the Ge-based films up to 40 nm, which can be tuned through a change of the molar mixing ratio between polymer template and precursor as proven by grazing incidence small angle X-ray scattering and scanning electron microscopy.
  •  
4.
  • Kluge, Regina M., et al. (author)
  • Doping Dependent In-Plane and Cross-Plane Thermoelectric Performance of Thin n-Type Polymer P(NDI2OD-T2) Films
  • 2020
  • In: Advanced Functional Materials. - : Wiley. - 1616-301X .- 1616-3028. ; 30:28
  • Journal article (peer-reviewed)abstract
    • Thermoelectric generators pose a promising approach in renewable energies as they can convert waste heat into electricity. In order to build high efficiency devices, suitable thermoelectric materials, both n- and p-type, are needed. Here, the n-type high-mobility polymer poly[N,N '-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5 '-(2,2 '-bithiophene) (P(NDI2OD-T2)) is focused upon. Via solution doping with 4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)-N,N-diphenylaniline (N-DPBI), a maximum power factor of (1.84 +/- 0.13) mu W K-2 m(-1) is achieved in an in-plane geometry for 5 wt% dopant concentration. Additionally, UV-vis spectroscopy and grazing-incidence wide-angle X-ray scattering are applied to elucidate the mechanisms of the doping process and to explain the discrepancy in thermoelectric performance depending on the charge carriers being either transported in-plane or cross-plane. Morphological changes are found such that the crystallites, built-up by extended polymer chains interacting via lamellar and pi-pi stacking, re-arrange from face- to edge-on orientation upon doping. At high doping concentrations, dopant molecules disturb the crystallinity of the polymer, hindering charge transport and leading to a decreased power factor at high dopant concentrations. These observations explain why an intermediate doping concentration of N-DPBI leads to an optimized thermoelectric performance of P(NDI2OD-T2) in an in-plane geometry as compared to the cross-plane case.
  •  
5.
  • Li, Nian, et al. (author)
  • In Situ Study of Order Formation in Mesoporous Titania Thin Films Templated by a Diblock Copolymer during Slot-Die Printing
  • 2020
  • In: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 12:51, s. 57627-57637
  • Journal article (peer-reviewed)abstract
    • Slot-die printing, a large-scale deposition technique, is applied to fabricate mesoporous titania films. Printing is interesting, for example, for scaling up solar cells where titania films with an interconnected mesoporous network and a large surface-to-volume ratio are desired as photoanodes. A fundamental understanding of the structure evolution during printing is of high significance in tailoring these films. In this work, we provide important insights into the self-assembly of the slot-die-printed titania/polystyrene-block-poly(ethylene oxide) (PS-b-PEO) micelles into ordered hybrid structures in real time via in situ grazing-incidence small-angle X-ray scattering (GISAXS). GISAXS allows for tracking both vertical and lateral structure development of the film formation process. In the hybrid film, a face-centered cubic (FCC) structure is preferentially formed at the interfaces with air and with the substrate, while a defect-rich mixed FCC and bodycentered cubic (BCC) structure forms in the bulk. After calcination, the surface and inner morphologies of the obtained nanostructured titania films are compared with the spin-coated analogues. In the printed films, the initially formed nanoscale structure of the hybrid film is preserved, and the resulting mesoporous titania film shows a superior order as compared with the spincoated thin films which can be beneficial for future applications.
  •  
6.
  •  
7.
  • Ohm, Wiebke, et al. (author)
  • Morphological properties of airbrush spray-deposited enzymatic cellulose thin films
  • 2018
  • In: JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH. - : Springer. - 1945-9645 .- 1547-0091 .- 1935-3804. ; 15:4, s. 759-769
  • Journal article (peer-reviewed)abstract
    • We investigate the layer formation of enzymatic cellulose by airbrush spray coating on silicon oxide surfaces. The layer structure and morphology of enzymatic cellulose films in the thickness range between 86 nm and 2.1 A mu m is determined as a function of the spray coating procedures. For each spray coating step, layer buildup, surface topography, crystallinity as well as the nanoscale structure are probed with atomic force microscopy and surface-sensitive X-ray scattering methods. Without intermittent drying, the film thickness saturates; with intermittent drying, a linear increase in layer thickness with the number of spray pulses is observed. A closed cellulose layer was always observed. The crystallinity remains unchanged; the nanoscale structures show three distinct sizes. Our results indicate that the smallest building blocks increasingly contribute to the morphology inside the cellulose network for thicker films, showing the importance of tailoring the cellulose nanofibrils. For a layer-by-layer coating, intermittent drying is mandatory.
  •  
8.
  • Schwartzkopf, Matthias, et al. (author)
  • In Situ Monitoring of Scale Effects on Phase Selection and Plasmonic Shifts during the Growth of AgCu Alloy Nanostructures for Anticounterfeiting Applications
  • 2022
  • In: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 5:3, s. 3832-3842
  • Journal article (peer-reviewed)abstract
    • Tailoring of plasmon resonances is essential for applications in anticounterfeiting. This is readily achieved by tuning the composition of alloyed metal clusters; in the simplest case, binary alloys are used. Yet, one challenge is the correlation of cluster morphology and composition with the changing optoelectronic properties. Hitherto, the early stages of metal alloy nanocluster formation in immiscible binary systems such as silver and copper have been accessible by molecular dynamics (MD) simulations and transmission electron microscopy (TEM). Here, we investigate in real time the formation of supported silver, copper, and silver-copper-alloy nanoclusters during sputter deposition on poly(methyl methacrylate) by combining in situ surface-sensitive X-ray scattering with optical spectroscopy. While following the transient growth morphologies, we quantify the early stages of phase separation at the nanoscale, follow the shifts of surface plasmon resonances, and quantify the growth kinetics of the nanogranular layers at different thresholds. We are able to extract the influence of scaling effects on the nucleation and phase selection. The internal structure of the alloy cluster shows a copper-rich core/silver-rich shell structure because the copper core yields a lower mobility and higher crystallization tendency than the silver fraction. We compare our results to MD simulation and TEM data. This demonstrates a route to tailor accurately the plasmon resonances of nanosized, polymer-supported clusters which is a crucial prerequisite for anticounterfeiting.
  •  
9.
  • Schwartzkopf, Matthias, et al. (author)
  • Real-time insight into nanostructure evolution during the rapid formation of ultra-thin gold layers on polymers
  • 2021
  • In: Nanoscale Horizons. - : ROYAL SOC CHEMISTRY. - 2055-6764 .- 2055-6756. ; 6:2, s. 132-138
  • Journal article (peer-reviewed)abstract
    • Ultra-thin metal layers on polymer thin films attract tremendous research interest for advanced flexible optoelectronic applications, including organic photovoltaics, light emitting diodes and sensors. To realize the large-scale production of such metal-polymer hybrid materials, high rate sputter deposition is of particular interest. Here, we witness the birth of a metal-polymer hybrid material by quantifying in situ with unprecedented time-resolution of 0.5 ms the temporal evolution of interfacial morphology during the rapid formation of ultra-thin gold layers on thin polystyrene films. We monitor average non-equilibrium cluster geometries, transient interface morphologies and the effective near-surface gold diffusion. At 1 s sputter deposition, the polymer matrix has already been enriched with 1% gold and an intermixing layer has formed with a depth of over 3.5 nm. Furthermore, we experimentally observe unexpected changes in aspect ratios of ultra-small gold clusters growing in the vicinity of polymer chains. For the first time, this approach enables four-dimensional insights at atomic scales during the gold growth under non-equilibrium conditions.
  •  
10.
  • Song, Lin, et al. (author)
  • Composition Morphology Correlation in PTB7-Th/PC71 BM Blend Films for Organic Solar Cells
  • 2019
  • In: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 11:3, s. 3125-3135
  • Journal article (peer-reviewed)abstract
    • From a morphological perspective, the understanding of the influence of the [6,6]-phenyl C-71-butyric acid methyl ester (PC71BM) content on the morphology of the active layer is not complete in organic solar cells (OSCs) with bulk heterojunction (BHJ) configuration based on the low-bandgap polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo [1,2-b:4,5-b dithiophene-2,6-diyhalt-(4-(2-ethylhexyl)-3-fluorothieno [3,4-b]thiophene-)-2-carboxylate-2-6-diyl] (PTB7-Th). In this work, we obtain the highest power conversion efficiency (PCE) of 10.5% for BHJ organic solar cells (OSCs) with a PTB7-Th/PC71BM weight ratio of 1:1.5. To understand the differences in PCEs caused by the PC71BM content, we investigate the morphology of PTB7-Th/PC71BM blend films in detail by determining the domain sizes, the polymer crystal structure, optical properties, and vertical composition as a function of the PC71BM concentration. The surface morphology is examined with atomic force microscopy, and the inner film morphology is probed with grazing incidence small angle X-ray scattering. The PTB7-Th crystal structure is characterized with grazing incidence wide-angle X-ray scattering and UV/vis spectroscopy. X-ray reflectivity is employed to yield information about the film vertical composition. The results show that in PTB7-Th/PC71BM blend films, the increase of PC71BM content leads to an enhanced microphase separation and a decreased polymer crystallinity. Moreover, a high PC71BM concentration is found to decrease the polymer domain sizes and crystal sizes and to promote polymer conjugation length and formation of fullerene-rich and/or polymer-rich layers. The differences in photovoltaic performance are well explained by these findings.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view