SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kondo Yutaka) "

Search: WFRF:(Kondo Yutaka)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ohata, Sho, et al. (author)
  • Estimates of mass absorption cross sections of black carbon for filter-based absorption photometers in the Arctic
  • 2021
  • In: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 14:10, s. 6723-6748
  • Journal article (peer-reviewed)abstract
    • Long-term measurements of atmospheric mass concentrations of black carbon (BC) are needed to investigate changes in its emission, transport, and deposition. However, depending on instrumentation, parameters related to BC such as aerosol absorption coefficient (babs) have been measured instead. Most ground-based measurements of babs in the Arctic have been made by filter-based absorption photometers, including particle soot absorption photometers (PSAPs), continuous light absorption photometers (CLAPs), Aethalometers, and multi-angle absorption photometers (MAAPs). The measured babs can be converted to mass concentrations of BC (MBC) by assuming the value of the mass absorption cross section (MAC; MBC= babs/ MAC). However, the accuracy of conversion of babs to MBC has not been adequately assessed. Here, we introduce a systematic method for deriving MAC values from babs measured by these instruments and independently measured MBC. In this method, MBC was measured with a filter-based absorption photometer with a heated inlet (COSMOS). COSMOS-derived MBC (MBC (COSMOS)) is traceable to a rigorously calibrated single particle soot photometer (SP2), and the absolute accuracy of MBC (COSMOS) has been demonstrated previously to be about 15 % in Asia and the Arctic. The necessary conditions for application of this method are a high correlation of the measured babs with independently measured MBC and long-term stability of the regression slope, which is denoted as MACcor (MAC derived from the correlation). In general, babs–MBC (COSMOS) correlations were high (r2= 0.76–0.95 for hourly data) at Alert in Canada, Ny-Ålesund in Svalbard, Barrow (NOAA Barrow Observatory) in Alaska, Pallastunturi in Finland, and Fukue in Japan and stable for up to 10 years. We successfully estimated MACcor values (10.8–15.1 m2 g−1 at a wavelength of 550 nm for hourly data) for these instruments, and these MACcor values can be used to obtain error-constrained estimates of MBC from babs measured at these sites even in the past, when COSMOS measurements were not made. Because the absolute values of MBC at these Arctic sites estimated by this method are consistent with each other, they are applicable to the study of spatial and temporal variation in MBC in the Arctic and to evaluation of the performance of numerical model calculations.
  •  
2.
  • Hirao, Yuki, et al. (author)
  • OGLE-2017-BLG-0406 : Spitzer Microlens Parallax Reveals Saturn-mass Planet Orbiting M-dwarf Host in the Inner Galactic Disk
  • 2020
  • In: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 160:2
  • Journal article (peer-reviewed)abstract
    • We report the discovery and analysis of the planetary microlensing event OGLE-2017-BLG-0406, which was observed both from the ground and by the Spitzer satellite in a solar orbit. At high magnification, the anomaly in the light curve was densely observed by ground-based-survey and follow-up groups, and it was found to be explained by a planetary lens with a planet/host mass ratio of q = 7.0 x 10(-4) from the light-curve modeling. The ground-only and Spitzer-only data each provide very strong one-dimensional (1D) constraints on the 2D microlens parallax vector pi(E). When combined, these yield a precise measurement of pi(E) and of the masses of the host M-host = 0.56 +/- 0.07 M-circle dot and planet M-planet = 0.41 +/- 0.05 M-Jup. The system lies at a distance D-L = 5.2 +/- 0.5 kpc from the Sun toward the Galactic bulge, and the host is more likely to be a disk population star according to the kinematics of the lens. The projected separation of the planet from the host is a(perpendicular to) = 3.5 +/- 0.3 au (i.e., just over twice the snow line). The Galactic-disk kinematics are established in part from a precise measurement of the source proper motion based on OGLE-IV data. By contrast, the Gaia proper-motion measurement of the source suffers from a catastrophic 10 sigma error.
  •  
3.
  • Zanatta, Marco, et al. (author)
  • Effects of mixing state on optical and radiative properties of black carbon in the European Arctic
  • 2018
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:19, s. 14037-14057
  • Journal article (peer-reviewed)abstract
    • Atmospheric aging promotes internal mixing of black carbon (BC), leading to an enhancement of light absorption and radiative forcing. The relationship between BC mixing state and consequent absorption enhancement was never estimated for BC found in the Arctic region. In the present work, we aim to quantify the absorption enhancement and its impact on radiative forcing as a function of microphysical properties and mixing state of BC observed in situ at the Zeppelin Arctic station (78 degrees N) in the spring of 2012 during the CLIMSLIP (Climate impacts of short-lived pollutants in the polar region) project. Single-particle soot photometer (SP2) measurements showed a mean mass concentration of refractory black carbon (rBC) of 39 ngm(-3), while the rBC mass size distribution was of lognormal shape, peaking at an rBC mass-equivalent diameter (D-rBC) of around 240 nm. On average, the number fraction of particles containing a BC core with D-rBC > 80 nm was less than 5% in the size range (overall optical particle diameter) from 150 to 500 nm. The BC cores were internally mixed with other particulate matter. The median coating thickness of BC cores with 220 nm < D-rBC < 260 nm was 52 nm, resulting in a core-shell diameter ratio of 1.4, assuming a coated sphere morphology. Combining the aerosol absorption coefficient observed with an Aethalometer and the rBC mass concentration from the SP2, a mass absorption cross section (MAC) of 9.8 m(2) g(-1) was inferred at a wavelength of 550 nm. Consistent with direct observation, a similar MAC value (8.4m(2) g(-1) at 550 nm) was obtained indirectly by using Mie theory and assuming a coated-sphere morphology with the BC mixing state constrained from the SP2 measurements. According to these calculations, the lensing effect is estimated to cause a 54% enhancement of the MAC compared to that of bare BC particles with equal BC core size distribution. Finally, the ARTDECO radiative transfer model was used to estimate the sensitivity of the radiative balance to changes in light absorption by BC as a result of a varying degree of internal mixing at constant total BC mass. The clear-sky noontime aerosol radiative forcing over a surface with an assumed wavelength-dependent albedo of 0.76-0.89 decreased, when ignoring the absorption enhancement, by -0.12 Wm(-2) compared to the base case scenario, which was constrained with mean observed aerosol properties for the Zeppelin site in Arctic spring. The exact magnitude of this forcing difference scales with environmental conditions such as the aerosol optical depth, solar zenith angle and surface albedo. Nevertheless, our investigation suggests that the absorption enhancement due to internal mixing of BC, which is a systematic effect, should be considered for quantifying the aerosol radiative forcing in the Arctic region.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view