SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Koposov Sergey) "

Search: WFRF:(Koposov Sergey)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bergemann, Maria, et al. (author)
  • The Gaia-ESO Survey : Hydrogen lines in red giants directly trace stellar mass
  • 2016
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 594
  • Journal article (peer-reviewed)abstract
    • Red giant stars are perhaps the most important type of stars for Galactic and extra-galactic archaeology: they are luminous, occur in all stellar populations, and their surface temperatures allow precise abundance determinations for many different chemical elements. Yet, the full star formation and enrichment history of a galaxy can be traced directly only if two key observables can be determined for large stellar samples: age and chemical composition. While spectroscopy is a powerful method to analyse the detailed abundances of stars, stellar ages are the missing link in the chain, since they are not a direct observable. However, spectroscopy should be able to estimate stellar masses, which for red giants directly infer ages provided their chemical composition is known. Here we establish a new empirical relation between the shape of the hydrogen line in the observed spectra of red giants and stellar mass determined from asteroseismology. The relation allows determining stellar masses and ages with an accuracy of 10-15%. The method can be used with confidence for stars in the following range of stellar parameters: 4000 < T-eff < 5000 K, 0.5 < log g < 3.5, -2.0 < [ Fe/H] < 0.3, and luminosities log L/L-Sun < 2.5. Our analysis provides observational evidence that the H-alpha spectral characteristics of red giant stars are tightly correlated with their mass and therefore their age. We also show that the method samples well all stellar populations with ages above 1 Gyr. Targeting bright giants, the method allows obtaining simultaneous age and chemical abundance information far deeper than would be possible with asteroseismology, extending the possible survey volume to remote regions of the Milky Way and even to neighbouring galaxies such as Andromeda or the Magellanic Clouds even with current instrumentation, such as the VLT and Keck facilities.
  •  
2.
  • de Jong, Roelof S., et al. (author)
  • 4MOST-4-metre Multi-Object Spectroscopic Telescope
  • 2014
  • In: Ground-based and Airborne Instrumentation for Astronomy V. - : SPIE. - 0277-786X .- 1996-756X. ; 9147
  • Conference paper (peer-reviewed)abstract
    • 4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of the European Southern Observatory (ESO). Its main science drivers are in the fields of galactic archeology, high-energy physics, galaxy evolution and cosmology. 4MOST will in particular provide the spectroscopic complements to the large area surveys coming from space missions like Gaia, eROSITA, Euclid, and PLATO and from ground-based facilities like VISTA, VST, DES, LSST and SKA. The 4MOST baseline concept features a 2.5 degree diameter field-of-view with similar to 2400 fibres in the focal surface that are configured by a fibre positioner based on the tilting spine principle. The fibres feed two types of spectrographs; similar to 1600 fibres go to two spectrographs with resolution R> 5000 (lambda similar to 390-930 nm) and similar to 800 fibres to a spectrograph with R> 18,000 (lambda similar to 392-437 nm & 515-572 nm & 605-675 nm). Both types of spectrographs are fixed-configuration, three-channel spectrographs. 4MOST will have an unique operations concept in which 5 year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure, resulting in more than 25 million spectra of targets spread over a large fraction of the southern sky. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept. 4MOST has been accepted for implementation by ESO with operations expected to start by the end of 2020. This paper provides a top-level overview of the 4MOST facility, while other papers in these proceedings provide more detailed descriptions of the instrument concept[1], the instrument requirements development[2], the systems engineering implementation[3], the instrument model[4], the fibre positioner concepts[5], the fibre feed[6], and the spectrographs[7].
  •  
3.
  • Franchini, Mariagrazia, et al. (author)
  • Gaia-ESO Survey : INTRIGOSS-A New Library of High-resolution Synthetic Spectra
  • 2018
  • In: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 862:2
  • Journal article (peer-reviewed)abstract
    • We present a high-resolution synthetic spectral library, INTRIGOSS, designed for studying FGK stars. The library is based on atmosphere models computed with specified individual element abundances via ATLAS12 code. Normalized SPectra (NSPs) and surface Flux SPectra (FSP) in the wavelength range 4830-5400 angstrom were computed with the SPECTRUM code. INTRIGOSS uses the solar composition of Grevesse et al. and four [alpha/Fe] abundance ratios, and consists of 15,232 spectra. The synthetic spectra are computed with astrophysical gf-values derived by comparing synthetic predictions with a solar spectrum of very high signal-to-noise ratio and the UVES-U580 spectra of five cool giants. The validity of the NSPs is assessed by using the UVES-U580 spectra of 2212 stars observed in the framework of the Gaia-ESO (European Southern Observatory) survey and characterized by homogeneous and accurate atmospheric parameter values and by detailed chemical compositions. The greater accuracy of NSPs with respect to spectra from the synthetic spectral libraries AMBRE, GES_Grid, PHOENIX, C14, and B17 is demonstrated by evaluating the consistency of the predictions of the different libraries for stars in the UVES-U580 sample. The validity of the FSPs is checked by comparing their prediction with both the observed spectral energy distribution (SED) and spectral indices. The comparison of FSPs with SEDs derived from the libraries ELODIE, INDO-U.S., and MILES indicates that the former reproduce the observed flux distributions within a few per cent and without any systematic trend. The good agreement between observational and synthetic Lick/SDSS (Sloan Digital Sky Survey) indices shows that the predicted blanketing of FSPs well reproduces the observed one, thus confirming the reliability of INTRIGOSS FSPs.
  •  
4.
  • Jin, Shoko, et al. (author)
  • The wide-field, multiplexed, spectroscopic facility WEAVE : Survey design, overview, and simulated implementation
  • 2024
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 530:3, s. 2688-2730
  • Journal article (peer-reviewed)abstract
    • WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, saw first light in late 2022. WEAVE comprises a new 2-deg field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959nm at R similar to 5000, or two shorter ranges at . After summarizing the design and implementation of WEAVE and its data systems, we present the organization, science drivers, and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for similar to 3 million stars and detailed abundances for similar to 1.5 million brighter field and open-cluster stars; (ii) survey similar to 0.4 million Galactic-plane OBA stars, young stellar objects, and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey similar to 400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionized gas in z < 0.5 cluster galaxies; (vi) survey stellar populations and kinematics in field galaxies at 0.3 less than or similar to z less than or similar to 0.7; (vii) study the cosmic evolution of accretion and star formation using >1 million spectra of LOFAR-selected radio sources; and (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.
  •  
5.
  • Koposov, Sergey E., et al. (author)
  • Kinematics and chemistry of recently discovered Reticulum 2 and Horologium 1 dwarf galaxies
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 811:1
  • Journal article (peer-reviewed)abstract
    • We report on VLT/GIRAFFE spectra of stars in two recently discovered ultra-faint satellites, Reticulum 2 and Horologium 1, obtained as part of the Gaia-ESO Survey. We identify 18 members in Reticulum 2 and five in Horologium 1. We find Reticulum 2 to have a velocity dispersion of 3.22(-0.49)(+1.64) km s(-1) , implying a mass-to-light ratio (M/L) of similar to 500. The mean metallicity of Reticulum 2 is [Fe/H] = -2.46, with an intrinsic dispersion of similar to 0.3 dex and alpha-enhancement of similar to 0.4 dex. We conclude that Reticulum 2 is a dwarf galaxy. We also report on the serendipitous discovery of four stars in a previously unknown stellar substructure near Reticulum 2 with [Fe/H] similar to -2 and V-hel similar to 220 km s(-1), far from the systemic velocity of Reticulum 2. For Horologium 1 we infer a velocity dispersion of sigma (V) = 4.9(-0.9)(+2.8) km s(-1) and a M/L ratio of similar to 600, leading us to conclude that Horologium 1 is also a dwarf galaxy. Horologium 1 is slightly more metal-poor than Reticulum 2 ([Fe/H] = -2.76) and is similarly alpha-enhanced: [alpha/Fe] similar to 0.3 dex with a significant spread of metallicities of 0.17 dex. The line-of-sight velocity of Reticulum 2 is offset by 100 km s(-1) from the prediction of the orbital velocity of the Large Magellanic Cloud (LMC), thus making its association with the Cloud uncertain. However, at the location of Horologium 1, both the backward-integrated orbit of the LMC and its halo are predicted to have radial velocities similar to that of the dwarf. Therefore, it is possible that Horologium 1 is or once was a member of the Magellanic family.
  •  
6.
  • Usman, Sam A., et al. (author)
  • Multiple populations and a CH star found in the 300S globular cluster stellar stream
  • 2024
  • In: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 529:3, s. 2413-2427
  • Journal article (peer-reviewed)abstract
    • Milky Way globular clusters (GCs) display chemical enrichment in a phenomenon called multiple stellar populations (MSPs). While the enrichment mechanism is not fully understood, there is a correlation between a cluster’s mass and the fraction of enriched stars found therein. However, present-day GC masses are often smaller than their masses at the time of formation due to dynamical mass-loss. In this work, we explore the relationship between mass and MSPs using the stellar stream 300S. We present the chemical abundances of eight red giant branch member stars in 300S with high-resolution spectroscopy from Magellan/MIKE. We identify one enriched star characteristic of MSPs and no detectable metallicity dispersion, confirming that the progenitor of 300S was a GC. The fraction of enriched stars (12.5 per cent) observed in our 300S stars is less than the 50 per cent of stars found enriched in Milky Way GCs of comparable present-day mass (∼104.5 M⊙⁠). We calculate the mass of 300S’s progenitor and compare it to the initial masses of intact GCs, finding that 300S aligns well with the trend between the system mass at formation and enrichment. 300S’s progenitor may straddle the critical mass threshold for the formation of MSPs and can therefore serve as a benchmark for the stellar enrichment process. Additionally, we identify a CH star, with high abundances of s-process elements, probably accreted from a binary companion. The rarity of such binaries in intact GCs may imply stellar streams permit the survival of binaries that would otherwise be disrupted.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view