SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kordopatis Georges) "

Search: WFRF:(Kordopatis Georges)

  • Result 1-10 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andrae, Rene, et al. (author)
  • First stellar parameters from Apsis
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 616
  • Journal article (peer-reviewed)abstract
    • The second Gaia data release (Gaia DR2) contains, beyond the astrometry, three-band photometry for 1.38 billion sources. One band is the G band, the other two were obtained by integrating the Gaia prism spectra (BP and RP). We have used these three broad photometric bands to infer stellar effective temperatures, T-eff, for all sources brighter than G = 17 mag with T-eff in the range 3000-10 000K (some 161 million sources). Using in addition the parallaxes, we infer the line-of-sight extinction, A(G), and the reddening, E(BP-RP), for 88 million sources. Together with a bolometric correction we derive luminosity and radius for 77 million sources. These quantities as well as their estimated uncertainties are part of Gaia DR2. Here we describe the procedures by which these quantities were obtained, including the underlying assumptions, comparison with literature estimates, and the limitations of our results. Typical accuracies are of order 324K (T-eff), 0.46 mag (A(G)), 0.23 mag (E(BP-RP)), 15% (luminosity), and 10% (radius). Being based on only a small number of observable quantities and limited training data, our results are necessarily subject to some extreme assumptions that can lead to strong systematics in some cases (not included in the aforementioned accuracy estimates). One aspect is the non-negativity contraint of our estimates, in particular extinction, which we discuss. Yet in several regions of parameter space our results show very good performance, for example for red clump stars and solar analogues. Large uncertainties render the extinctions less useful at the individual star level, but they show good performance for ensemble estimates. We identify regimes in which our parameters should and should not be used and we define a "clean" sample. Despite the limitations, this is the largest catalogue of uniformly-inferred stellar parameters to date. More precise and detailed astrophysical parameters based on the full BP/RP spectrophotometry are planned as part of the third Gaia data release.
  •  
2.
  • Christleib, Norbert, et al. (author)
  • 4MOST Consortium Survey 2: The Milky Way Halo High-Resolution Survey
  • 2019
  • In: Messenger. - 0722-6691. ; 175, s. 26-29
  • Journal article (other academic/artistic)abstract
    • We will study the formation history of the Milky Way, and the earliest phases of its chemical enrichment, with a sample of more than 1.5 million stars at high galactic latitude. Elemental abundances of up to 20 elements with a precision of better than 0.2 dex will be derived for these stars. The sample will include members of kinematically coherent substructures, which we will associate with their possible birthplaces by means of their abundance signatures and kinematics, allowing us to test models of galaxy formation. Our target catalogue is also expected to contain 30 000 stars at a metallicity of less than one hundredth that of the Sun. This sample will therefore be almost a factor of 100 larger than currently existing samples of metal-poor stars for which precise elemental abundances are available (determined from high-resolution spectroscopy), enabling us to study the early chemical evolution of the Milky Way in unprecedented detail.
  •  
3.
  • Fernández-Alvar, Emma, et al. (author)
  • The Pristine survey XIII : uncovering the very metal-poor tail of the thin disc
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 508:1, s. 1509-1525
  • Journal article (peer-reviewed)abstract
    • We evaluate the rotational velocity of stars observed by the Pristine survey towards the Galactic anticentre spanning a wide range of metallicities from the extremely metal-poor regime ([Fe/H] < −3) to nearly solar metallicity. In the Galactic anticentre direction, the rotational velocity (Vφ) is similar to the tangential velocity in the galactic longitude direction (V). This allows us to estimate Vφ from Gaia early data release 3 (Gaia EDR3) proper motions for stars without radial velocity measurements. This substantially increases the sample of stars in the outer disc with estimated rotational velocities. Our stellar sample towards the anticentre is dominated by a kinematical thin disc with a mean rotation of ∼−220 km s−1. However, our analysis reveals the presence of more stellar substructures. The most intriguing is a well-populated extension of the kinematical thin disc down to [Fe/H] ∼ −2 . A scarcer fast-rotating population reaching the extremely metal-poor regime down to [Fe/H] ∼ −3.5 is also detected but without statistical significance to unambiguously state whether this is the extremely metal-poor extension of the thin disc or the high-rotating tail of hotter structures (like the thick disc or the halo). In addition, a more slowly rotating kinematical thick disc component is also required to explain the observed V distribution at [Fe/H] > −1.5 . Furthermore, we detect signatures of a ‘heated disc’, the so-called Splash, at metallicities higher than ∼−1.5. Finally, at [Fe/H] < −1.5 our anticentre sample is dominated by a kinematical halo with a net prograde motion.
  •  
4.
  • Franchini, Mariagrazia, et al. (author)
  • The Gaia-ESO Survey : Carbon Abundance in the Galactic Thin and Thick Disks
  • 2020
  • In: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 888:2
  • Journal article (peer-reviewed)abstract
    • This paper focuses on carbon, which is one of the most abundant elements in the universe and is of high importance in the field of nucleosynthesis and galactic and stellar evolution. The origin of carbon and the relative importance of massive and low- to intermediate-mass stars in producing it is still a matter of debate. We aim at better understanding the origin of carbon by studying the trends of [C/H], [C/Fe], and [C/Mg] versus [Fe/H] and [Mg/H] for 2133 FGK dwarf stars from the fifth Gaia-ESO Survey internal data release (GES iDR5). The availability of accurate parallaxes and proper motions from Gaia DR2 and radial velocities from GES iDR5 allows us to compute Galactic velocities, orbits, absolute magnitudes, and, for 1751 stars, Bayesian-derived ages. Three different selection methodologies have been adopted to discriminate between thin- and thick-disk stars. In all the cases, the two stellar groups show different [C/H], [C/Fe], and [C/Mg] and span different age intervals, with the thick-disk stars being, on average, older than the thin-disk ones. The behaviors of [C/H], [C/Fe], and [C/Mg] versus [Fe/H], [Mg/H], and age all suggest that C is primarily produced in massive stars. The increase of [C/Mg] for young thin-disk stars indicates a contribution from low-mass stars or the increased C production from massive stars at high metallicities due to the enhanced mass loss. The analysis of the orbital parameters R-med and supports an "inside-out" and "upside-down" formation scenario for the disks of the Milky Way.
  •  
5.
  • Franchini, Mariagrazia, et al. (author)
  • The Gaia-ESO Survey : Oxygen Abundance in the Galactic Thin and Thick Disks*
  • 2021
  • In: Astronomical Journal. - : Institute of Physics Publishing (IOPP). - 0004-6256 .- 1538-3881. ; 161:1
  • Journal article (peer-reviewed)abstract
    • We analyze the oxygen abundances of a stellar sample representative of the two major Galactic populations: the thin and thick disks. The aim is to investigate the differences between members of the Galactic disks and contribute to the understanding of the origin of oxygen chemical enrichment in the Galaxy. The analysis is based on the [O i] = 6300.30 A oxygen line in high-resolution spectra (R similar to 52,500) obtained from the Gaia-ESO public spectroscopic Survey (GES). By comparing the observed spectra with a theoretical data set computed in LTE with the SPECTRUM synthesis and ATLAS12 codes, we derive the oxygen abundances of 516 FGK dwarfs for which we have previously measured carbon abundances. Based on kinematic, chemical, and dynamical considerations, we identify 20 thin and 365 thick disk members. We study the potential trends of both subsamples in terms of their chemistry ([O/H], [O/Fe], [O/Mg], and [C/O] versus [Fe/H] and [Mg/H]), age, and position in the Galaxy. The main results are that (a) [O/H] and [O/Fe] ratios versus [Fe/H] show systematic differences between thin and thick disk stars with an enhanced O abundance of thick disk stars with respect to thin disk members and a monotonic decrement of [O/Fe] with increasing metallicity, even at metal-rich regime; (b) there is a smooth correlation of [O/Mg] with age in both populations, suggesting that this abundance ratio can be a good proxy of stellar ages within the Milky Way; and (c) thin disk members with [Fe/H] 0 display a [C/O] ratio smaller than the solar value, suggesting a possibly outward migration of the Sun from lower Galactocentric radii.
  •  
6.
  • Jin, Shoko, et al. (author)
  • The wide-field, multiplexed, spectroscopic facility WEAVE : Survey design, overview, and simulated implementation
  • 2024
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 530:3, s. 2688-2730
  • Journal article (peer-reviewed)abstract
    • WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, saw first light in late 2022. WEAVE comprises a new 2-deg field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959nm at R similar to 5000, or two shorter ranges at . After summarizing the design and implementation of WEAVE and its data systems, we present the organization, science drivers, and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for similar to 3 million stars and detailed abundances for similar to 1.5 million brighter field and open-cluster stars; (ii) survey similar to 0.4 million Galactic-plane OBA stars, young stellar objects, and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey similar to 400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionized gas in z < 0.5 cluster galaxies; (vi) survey stellar populations and kinematics in field galaxies at 0.3 less than or similar to z less than or similar to 0.7; (vii) study the cosmic evolution of accretion and star formation using >1 million spectra of LOFAR-selected radio sources; and (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.
  •  
7.
  • Kordopatis, Georges, et al. (author)
  • Automatic line selection for abundance determinations in large stellar spectroscopic surveys
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 674
  • Journal article (peer-reviewed)abstract
    • Context. Over the past few years, new multiplex spectrographs have emerged to observe several millions of stars. The optimisation of these instruments (w.r.t. their resolution or wavelength range), their associated surveys (choice of instrumental set-up), and their parameterisation pipelines require methods that estimate which wavelengths (or pixels) contain useful information. Aims. We propose a method that establishes the usefulness of an atomic spectral line, whereby usefulness is defined by the purity of the line and its detectability. We demonstrate two applications of our code: a) optimising an instrument by comparing the number of detected useful lines at a given wavelength range and resolution; and b) optimising the line list for a given set-up, in the sense of creating a golden subsample of the least-blended lines that are detectable at a range of signal-to-noise ratio values. Methods. The method compares pre-computed normalised synthetic stellar spectra containing all of the elements and molecules with spectra solely containing the lines of specific elements. Then, the flux ratios between the full spectrum and the element spectrum are computed to estimate the line purities. The method automatically identifies: (i) the line's central wavelength, (ii) its detectability based on its depth and a given signal-to-noise threshold, and (iii) its usefulness based on the purity ratio defined above. Results. We applied this method to compare the three WEAVE high-resolution set-ups (blue: 404-465 nm, green: 473-545 nm, red: 595-685 nm) and find that the green+red set-up both allows us to measure more elements and contains more numerous useful lines. However, there is a disparity in terms of which elements are detected over each of the set-ups that we have characterised. We also studied the performances of high-resolution (R similar to 20 000) and low-resolution (R similar to 6000) spectra covering the entire optical wavelength range. Assuming a purity threshold of 60%, we find that the high-resolution set-up contains a much wealthier selection of lines, for any of the considered elements; whereas the low-resolution set-up displays a 'loss' of 50% to 90% of the lines (depending on the nucleosynthetic channel considered), even when the signal-to-noise ratio is increased. Conclusions. The method presented here provides a vital diagnostic of where to focus to get the most out of a spectrograph. It is easy to implement for future instruments that have not yet determined their final configuration, as well as for pipelines that require line masks.
  •  
8.
  • Kunder, Andrea, et al. (author)
  • THE RADIAL VELOCITY EXPERIMENT (RAVE) : FIFTH DATA RELEASE
  • 2017
  • In: The Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 153:2
  • Journal article (peer-reviewed)abstract
    • Data Release 5 (DR5) of the Radial Velocity Experiment (RAVE) is the fifth data release from a magnitude-limited (9 < I < 12) survey of stars randomly selected in the Southern Hemisphere. The RAVE medium-resolution spectra (R ∼ 7500) covering the Ca-triplet region (8410-8795 A) span the complete time frame from the start of RAVE observations in 2003 to their completion in 2013. Radial velocities from 520,781 spectra of 457,588 unique stars are presented, of which 255,922 stellar observations have parallaxes and proper motions from the Tycho-Gaia astrometric solution in Gaia DR1. For our main DR5 catalog, stellar parameters (effective temperature, surface gravity, and overall metallicity) are computed using the RAVE DR4 stellar pipeline, but calibrated using recent K2 Campaign 1 seismic gravities and Gaia benchmark stars, as well as results obtained from high-resolution studies. Also included are temperatures from the Infrared Flux Method, and we provide a catalog of red giant stars in the dereddened color - (J Ks) 0 interval (0.50, 0.85) for which the gravities were calibrated based only on seismology. Further data products for subsamples of the RAVE stars include individual abundances for Mg, Al, Si, Ca, Ti, Fe, and Ni, and distances found using isochrones. Each RAVE spectrum is complemented by an error spectrum, which has been used to determine uncertainties on the parameters. The data can be accessed via the RAVE Web site or the VizieR database.
  •  
9.
  • Lehmann, Christian, et al. (author)
  • Probing the strength of radial migration via churning by using metal-rich red giant stars from APOGEE
  • 2024
  • In: Monthly Notices of the Royal Astronomical Society. - 0035-8711. ; 533:1, s. 538-550
  • Journal article (peer-reviewed)abstract
    • Making use of the APOGEE DR17 catalogue with high quality data for 143 509 red giant branch stars we explore the strength of different mechanisms that causes a star to radially migrate in the Milky Way stellar disc. At any position in the disc we find stars that are more metal-rich than the local interstellar medium. This is surprising and normally attributed to the migration of these stars after their formation inside their current Galactocentric radius. Such stars are prime candidates for studying the strength of different migratory processes. We specifically select two types of metal-rich stars: (i) super metal-rich stars ([Fe/H] > 0.2) and (ii) stars that are more metal-rich than their local environment. For both, we explore the distribution of orbital parameters and ages as evidence of their migration history. We find that most super metal-rich stars have experienced some amount of churning as they have orbits with Rg ≥ 5 kpc. Furthermore, about half of the super metal-rich stars are on non-circular orbits (ecc > 0.15) and therefore also have experienced blurring. The metallicity of young stars in our sample is generally the same as the metallicity of the interstellar medium, suggesting they have not radially migrated yet. Stars with lower metallicity than the local environment have intermediate to old ages. We further find that super metal-rich stars have approximately the same age distribution at all Galactocentric radii, which suggests that radial migration is a key mechanism responsible for the chemical compositions of stellar populations in the Milky Way.
  •  
10.
  • Martin, Nicolas F., et al. (author)
  • The Pristine survey - XVI. The metallicity of 26 stellar streams around the Milky Way detected with the STREAMFINDER in Gaia EDR3
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 516:4, s. 5331-5354
  • Journal article (peer-reviewed)abstract
    • We use the photometric metallicities provided by the panoramic Pristine survey to study the veracity and derive the metallicities of the numerous stellar streams found by the application of the STREAMFINDER algorithm to the Gaia Early Data Release 3 data. All 26 streams present in Pristine show a clear metallicity distribution function, which provides an independent check of the reality of these structures, supporting the reliability of STREAMFINDER in finding streams and the power of Pristine to measure precise metallicities. We further present six candidate structures with coherent phase-space and metallicity signals that are very likely streams. The majority of studied streams are very metal-poor (14 structures with [Fe/H] < −2.0) and include three systems with [Fe/H] < −2.9 (C-11, C-19, and C-20). These streams could be the closest debris of low-luminosity dwarf galaxies or may have originated from globular clusters of significantly lower metallicity than any known current Milky Way globular cluster. Our study shows that the promise of the Gaia data for Galactic Archeology studies can be substantially strengthened by quality photometric metallicities, allowing us to peer back into the earliest epochs of the formation of our Galaxy and its stellar halo constituents.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view