SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kouyama Toru) "

Search: WFRF:(Kouyama Toru)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Michikami, Tatsuhiro, et al. (author)
  • Three-axial shape distributions of pebbles, cobbles and boulders smaller than a few meters on asteroid Ryugu
  • 2022
  • In: Icarus. - : Elsevier. - 0019-1035 .- 1090-2643. ; 381
  • Journal article (peer-reviewed)abstract
    • Over a broad size range, the shapes of impact fragments from catastrophic disruptions are distributed around the mean axial ratio 2: √2: 1, irrespective of experimental conditions and target materials. Although most blocks on asteroids are likely to be impact fragments, there is not enough quantitative data for reliable statistics on their three-axial lengths and/or ratios because it is difficult to precisely estimate the heights of the blocks. In this study, we evaluate the heights of blocks on asteroid Ryugu by measuring their shadows. The three-axial ratios of ~4100 small blocks with diameters from 5.0 cm to 7.6 m in Ryugu's equatorial region are investigated using eight close-up images of narrower localities taken at altitudes below 500 m, i.e. at <5.4 cm/pixel resolution, obtained immediately before the second touch-down of the Hayabusa2 spacecraft. The purpose of this study is to investigate the block shape distribution, which is important for understanding the geological history of asteroid Ryugu. Specifically, the shape distribution is compared to laboratory impact fragments. Our observations indicate that the shape distributions of blocks smaller than 1 m on Ryugu are consistent with laboratory impact fragment shape distributions, implying that the dominant shape-determining process for blocks on Ryugu was impact fragmentation. Blocks several meters in size in the equatorial region seem to be slightly flatter than the rest, suggesting that some blocks are partly buried in a bed of regolith. In conclusion, the shape distributions of blocks from several-cm to several-m in the equatorial region of asteroid Ryugu suggest that these are mainly fragments originating from the catastrophic disruption of their parent body and/or from a later impact.
  •  
2.
  • Okada, Tatsuaki, et al. (author)
  • Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2
  • 2017
  • In: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 208:1-4, s. 255-286
  • Journal article (peer-reviewed)abstract
    • The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16×12∘16×12∘ and a spatial resolution of 0.05∘0.05∘ per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission.
  •  
3.
  • Schröder, Stefanus, et al. (author)
  • Characterization of the MASCOT landing area by Hayabusa2
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Journal article (peer-reviewed)abstract
    • Context. After landing on C-type asteroid Ryugu, MASCOT imaged brightly colored, submillimeter-sized inclusions in a small rock. Hayabusa2 successfully returned a sample of small particles from the surface of Ryugu, but none of these appear to harbor such inclusions. The samples are considered representative of Ryugu.Aims. To understand the apparent discrepancy between MASCOT observations and Ryugu samples, we assess whether the MASCOT landing site, and the rock by implication, is perhaps atypical for Ryugu.Methods. We analyzed observations of the MASCOT landing area acquired by three instruments on board Hayabusa2: a camera (ONC), a nearinfrared spectrometer (NIRS3), and a thermal infrared imager (TIR). We compared the landing area properties thus retrieved with those of theaverage Ryugu surface.Results. We selected several areas and landforms in the landing area for analysis: a small crater, a collection of smooth rocks, and the landing site itself. The crater is relatively blue and the rocks are relatively red. The spectral and thermophysical properties of the landing site are very closeto those of the average Ryugu surface. The spectral properties of the MASCOT rock are probably close to average, but its thermal inertia may besomewhat higher.Conclusions. The MASCOT rock can also be considered representative of Ryugu. Some of the submillimeter-sized particles in the returned samples stand out because of their atypical spectral properties. Such particles may be present as inclusions in the MASCOT rock.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view