SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kovacs Gergo) "

Search: WFRF:(Kovacs Gergo)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gulyás, Erzsébet, et al. (author)
  • Visual imagery vividness declines across the lifespan
  • 2022
  • In: Cortex. - : Elsevier BV. - 0010-9452 .- 1973-8102. ; 154, s. 365-374
  • Journal article (peer-reviewed)abstract
    • The capacity to elicit vivid visual mental images varies within an extensive range across individuals between hyper- and aphantasia. It is not clear, however, whether imagery vividness is constant across the lifespan or changes during development and later in life. Without enforcing the constraints of strict experimental procedures and representativity across the entire population, our purpose was to explore the self-reported level of imagery vividness and determine the relative proportions of aphantasic/hyperphantasic participants in different age groups. Relying on the frequently used Vividness of Visual Imagery Questionnaire, we collected data on a random sample of 2252 participants between the ages of 12–60 years. We found a novel developmental pattern that describes a declining ability to elicit vivid visual mental images in the group averages of different age groups from adolescence to middle age. This effect involves both a decreasing proportion of individuals with vivid visual imagery vividness and an increasing proportion of individuals with low imagery vividness as maturation (based on bone age assessments in adolescents) and ageing progress. These findings may shed some light on the developmental mechanisms of our internal, stimulus-independent processes, and might also help to determine genetic, maturational, and age-dependent factors in the cases of hyper- and aphantasia. 
  •  
2.
  • Molnár, Anna, et al. (author)
  • Untargeted metabolomic analyses support the main phylogenetic groups of the common plant-associated Alternaria fungi isolated from grapevine (Vitis vinifera)
  • 2023
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Alternaria, a cosmopolitan fungal genus is a dominant member of the grapevine (Vitis vinifera) microbiome. Several Alternaria species are known to produce a variety of secondary metabolites, which are particularly relevant to plant protection and food safety in field crops. According to previous findings, the majority of Alternaria species inhabiting grapevine belong to Alternaria sect. Alternaria. However, the phylogenetic diversity and secondary metabolite production of the distinct Alternaria species has remained unclear. In this study, our aim was to examine the genetic and metabolic diversity of endophytic Alternaria isolates associated with the above-ground tissues of the grapevine. Altogether, 270 Alternaria isolates were collected from asymptomatic leaves and grape clusters of different grapevine varieties in the Eger wine region of Hungary. After analyses of the nuclear ribosomal DNA internal transcribed spacer (ITS) and RNA polymerase second largest subunit (rpb2) sequences, 170 isolates were chosen for further analyses. Sequences of the Alternaria major allergen gene (Alt a 1), endopolygalacturonase (endoPG), OPA10-2, and KOG1058 were also included in the phylogenetic analyses. Identification of secondary metabolites and metabolite profiling of the isolates were performed using high-performance liquid chromatography (HPLC)–high-resolution tandem mass spectrometry (HR-MS/MS). The multilocus phylogeny results revealed two distinct groups in grapevine, namely A. alternata and the A. arborescens species complex (AASC). Eight main metabolites were identified in all collected Alternaria isolates, regardless of their affiliation to the species and lineages. Multivariate analyses of untargeted metabolites found no clear separations; however, a partial least squares-discriminant analysis model was able to successfully discriminate between the metabolic datasets from isolates belonging to the AASC and A. alternata. By conducting univariate analysis based on the discriminant ability of the metabolites, we also identified several features exhibiting large and significant variation between A. alternata and the AASC. The separation of these groups may suggest functional differences, which may also play a role in the functioning of the plant microbiome.
  •  
3.
  • Reimer, Lasse, et al. (author)
  • Low dose DMSO treatment induces oligomerization and accelerates aggregation of α-synuclein
  • 2022
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12
  • Journal article (peer-reviewed)abstract
    • Dimethyl sulfoxide (DMSO) is a highly utilized small molecule that serves many purposes in scientific research. DMSO offers unique polar, aprotic and amphiphilic features, which makes it an ideal solvent for a wide variety of both polar and nonpolar molecules. Furthermore, DMSO is often used as a cryoprotectant in cell-based research. However, recent reports suggest that DMSO, even at low concentration, might interfere with important cellular processes, and cause macromolecular changes to proteins where a shift from α-helical to β-sheet structure can be observed. To investigate how DMSO might influence current research, we assessed biochemical and cellular impacts of DMSO treatment on the structure of the aggregation-prone protein α-synuclein, which plays a central role in the etiology of Parkinson’s disease, and other brain-related disorders, collectively termed the synucleinopathies. Here, we found that addition of DMSO increased the particle-size of α-synuclein, and accelerated the formation of seeding-potent fibrils in a dose-dependent manner. These fibrils made in the presence of DMSO were indistinguishable from fibrils made in pure PBS, when assessed by proteolytic digestion, cytotoxic profile and their ability to seed cellular aggregation of α-synuclein. Moreover, as evident through binding to the MJFR-14-6-4-2 antibody, which preferentially recognizes aggregated forms of α-synuclein, and a bimolecular fluorescence complementation assay, cells exposed to DMSO experienced increased aggregation of α-synuclein. However, no observable α-synuclein abnormalities nor differences in neuronal survival were detected after oral DMSO-treatment in either C57BL/6- or α-synuclein transgenic F28 mice. In summary, we demonstrate that low concentrations of DMSO makes α-synuclein susceptible to undergo aggregation both in vitro and in cells. This may affect experimental outcomes when studying α-synuclein in the presence of DMSO, and should call for careful consideration when such experiments are planned.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view