SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Krasnikov Sergey A) "

Search: WFRF:(Krasnikov Sergey A)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chaika, Alexander N., et al. (author)
  • Rotated domain network in graphene on cubic-SiC(001)
  • 2014
  • In: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 25:13
  • Journal article (peer-reviewed)abstract
    • The atomic structure of the cubic-SiC(001) surface during ultra-high vacuum graphene synthesis has been studied using scanning tunneling microscopy (STM) and low-energy electron diffraction. Atomically resolved STM studies prove the synthesis of a uniform, millimeter-scale graphene overlayer consisting of nanodomains rotated by +/- 13.5 degrees relative to the < 110 >-directed boundaries. The preferential directions of the domain boundaries coincide with the directions of carbon atomic chains on the SiC(001)-c(2 x 2) reconstruction, fabricated prior to graphene synthesis. The presented data show the correlation between the atomic structures of the SiC(001)-c(2 x 2) surface and the graphene/SiC(001) rotated domain network and pave the way for optimizing large-area graphene synthesis on low-cost cubic-SiC(001)/Si(001) wafers.
  •  
2.
  •  
3.
  • Doyle, Catherine M., et al. (author)
  • Ni-Cu ion exchange observed for Ni(II)-porphyrins on Cu(111)
  • 2014
  • In: Chemical Communications. - : Royal Society of Chemistry (RSC). - 1364-548X .- 1359-7345. ; 50:26, s. 3447-3449
  • Journal article (peer-reviewed)abstract
    • A Ni-Cu ion exchange has been observed for (5,15-dibromo-10,20-diphenylporphyrinato)nickel(II) (NiDBrDPP) and (5,10,15,20-tetrakis-(4-bromophenyl) porphyrinato)nickel(II) (NiTBrPP) on Cu(111). The ion exchange proceeds at a faster rate for the NiDBrDPP/Cu(111) system compared to NiTBrPP/Cu(111). This is explained in terms of the macrocycle-substrate distance and the distortions
  •  
4.
  • Krasnikov, Sergey A., et al. (author)
  • Formation of extended covalently bonded Ni porphyrin networks on the Au(111) surface
  • 2011
  • In: Nano Reseach. - : Springer Science and Business Media LLC. - 1998-0124 .- 1998-0000. ; 4:4, s. 376-384
  • Journal article (peer-reviewed)abstract
    • The growth and ordering of {5,10,15,20-tetrakis(4-bromophenyl)porphyrinato}nickel(II) (NiTBrPP) molecules on the Au(111) surface have been investigated using scanning tunnelling microscopy, X-ray absorption, core-level photoemission, and microbeam low-energy electron diffraction. When deposited onto the substrate at room temperature, the NiTBrPP forms a well-ordered close-packed molecular layer in which the molecules have a flat orientation with the porphyrin macrocycle plane lying parallel to the substrate. Annealing of the NiTBrPP layer on the Au(111) surface at 525 K leads to dissociation of bromine from the porphyrin followed by the formation of covalent bonds between the phenyl substituents of the porphyrin. This results in the formation of continuous covalently bonded porphyrin networks, which are stable up to 800 K and can be recovered after exposure to ambient conditions. By controlling the experimental conditions, a robust, extended porphyrin network can be prepared on the Au(111) surface that has many potential applications such as protective coatings, in sensing or as a host structure for molecules and clusters.
  •  
5.
  • Lubben, Olaf, et al. (author)
  • Self-assembly of Fe nanocluster arrays on templated surfaces
  • 2012
  • In: Applied Physics Reviews. - : AIP Publishing. - 1931-9401. ; 111:7
  • Journal article (peer-reviewed)abstract
    • The growth of Fe nanoclusters on the Ge(001) and MoO2/Mo(110) surfaces has been studied using low-temperature scanning tunneling microscopy (STM) and X-ray magnetic circular dichroism (XMCD). STM results indicate that at low coverage Fe atoms self-assemble on both surfaces into well-separated nanoclusters, which nucleate at equivalent surface sites. Their size, shape, and the observed spatial separation are dictated by the substrate and depend on preparation conditions. Annealing the Fe nanoclusters on Ge(001) at 420 K leads to the formation of linear nanocluster arrays, which follow the Ge dimer rows of the substrate, due to cluster mobility at such temperature. In turn, linear Fe nanocluster arrays are formed on the MoO2/Mo(110) surface at room temperature at a surface coverage greater than 0.5 monolayer. This is due to the more pronounced row pattern of the MoO2/Mo(110) surface compared to Ge(001). These nanocluster arrays follow the direction of the oxide rows of the strained MoO2/Mo(110) surface. The Fe nanoclusters formed on both surfaces show a superparamagnetic behavior as measured by XMCD. (C) 2012 American Institute of Physics. [doi:10.1063/1.3676207]
  •  
6.
  • Murphy, Barry E., et al. (author)
  • Homolytic Cleavage of Molecular Oxygen by Manganese Porphyrins Supported on Ag(111)
  • 2014
  • In: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 8:5, s. 5190-5198
  • Journal article (peer-reviewed)abstract
    • Oxygen binding and cleavage are important for both molecular recognition and catalysis. Mn-based porphyrins in particular are used as catalysts for the epoxidation of alkenes, and in this study the homolytic cleavage of O-2 by a surface-supported monolayer of Mn porphyrins on Ag(111) is demonstrated by scanning tunneling microscopy, X-ray absorption, and X-ray photoemission. As deposited, {5,10,15,20-tetraphenylporphyrinato}Mn(III)CI(MnCITPP) adopts a saddle conformation with the average plane of its macrocyde parallel to the substrate and the axial CI ligand pointing upward, away from the substrate. The adsorption of MnCITPP on Ag(111) Is accompanied by a reduction of the Mn oxidation state from Mn(III) to Mn(II) due to charge transfer between the substrate and the molecule. Annealing the Mn(II)CITPP monolayer up to 510 K causes the chlorine ligands to desorb from the porphyrins while leaving the monolayer intact. The Mn(II)TPP is stabilized by the surface acting as an axial ligand for the metal center. Exposure of the Mn(11)TPP/Ag(111) system to molecular oxygen results in the dissociation of O-2 and forms pairs of Mn(111)OTPP molecules on the surface. Annealing at 445 K reduces the Mn(111)OTPP complex back to Mn(II)TPP/Ag(111). The activation energies for Cl and 0 removal were found to be 0.35 +/- 0.02 eV and 0.26 +/- 0.03 eV, respectively.
  •  
7.
  • Wu, Han-Chun, et al. (author)
  • Large positive in-plane magnetoresistance induced by localized states at nanodomain boundaries in graphene
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • Graphene supports long spin lifetimes and long diffusion lengths at room temperature, making it highly promising for spintronics. However, making graphene magnetic remains a principal challenge despite the many proposed solutions. Among these, graphene with zig-zag edges and ripples are the most promising candidates, as zig-zag edges are predicted to host spin-polarized electronic states, and spin-orbit coupling can be induced by ripples. Here we investigate the magnetoresistance of graphene grown on technologically relevant SiC/Si(001) wafers, where inherent nanodomain boundaries sandwich zig-zag structures between adjacent ripples of large curvature. Localized states at the nanodomain boundaries result in an unprecedented positive in-plane magnetoresistance with a strong temperature dependence. Our work may offer a tantalizing way to add the spin degree of freedom to graphene.
  •  
8.
  • Wu, Han-Chun, et al. (author)
  • Transport Gap Opening and High On-Off Current Ratio in Trilayer Graphene with Self-Aligned Nanodomain Boundaries.
  • 2015
  • In: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 9:9, s. 8967-8975
  • Journal article (peer-reviewed)abstract
    • Trilayer graphene exhibits exceptional electronic properties that are of interest both for fundamental science and for technological applications. The ability to achieve a high on-off current ratio is the central question in this field. Here, we propose a simple method to achieve a current on-off ratio of 10(4) by opening a transport gap in Bernal-stacked trilayer graphene. We synthesized Bernal-stacked trilayer graphene with self-aligned periodic nanodomain boundaries (NBs) on the technologically relevant vicinal cubic-SiC(001) substrate and performed electrical measurements. Our low-temperature transport measurements clearly demonstrate that the self-aligned periodic NBs can induce a charge transport gap greater than 1.3 eV. More remarkably, the transport gap of ∼0.4 eV persists even at 100 K. Our results show the feasibility of creating new electronic nanostructures with high on-off current ratios using graphene on cubic-SiC.
  •  
9.
  • Luebben, Olaf, et al. (author)
  • Fe Nanoclusters on the Ge(001) Surface Studied by Scanning Tunneling Microscopy, Density Functional Theory Calculations and X-Ray Magnetic Circular Dichroism
  • 2011
  • In: Nano Reseach. - : Springer Science and Business Media LLC. - 1998-0124 .- 1998-0000. ; 4:10, s. 971-978
  • Journal article (peer-reviewed)abstract
    • The growth of Fe nanoclusters on the Ge(001) surface has been studied using low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM results indicate that Fe nucleates on the Ge(001) surface, forming well-ordered nanoclusters of uniform size. Depending on the preparation conditions, two types of nanoclusters were observed having either four or sixteen Fe atoms within a nanocluster. The results were confirmed by DFT calculations. Annealing the nanoclusters at 420 K leads to the formation of nanorow structures, due to cluster mobility at such temperature. The Fe nanoclusters and nanorow structures formed on the Ge(001) surface show a superparamagnetic behaviour as measured by X-ray magnetic circular dichroism.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view