SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Krautz Robert) "

Search: WFRF:(Krautz Robert)

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hauling, Thomas, et al. (author)
  • A Drosophila immune response against Ras-induced overgrowth
  • 2014
  • In: Biology Open. - : The Company of Biologists. - 2046-6390. ; 3:4, s. 250-260
  • Journal article (peer-reviewed)abstract
    • Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (Ras(V12)), both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of Ras(V12). As a proof-of-principle, we show that one of the induced genes (santa-maria), which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity.
  •  
2.
  • Arefin, Badrul, et al. (author)
  • Apoptosis in Hemocytes Induces a Shift in Effector Mechanisms in the Drosophila Immune System and Leads to a Pro-Inflammatory State
  • 2015
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:8
  • Journal article (peer-reviewed)abstract
    • Apart from their role in cellular immunity via phagocytosis and encapsulation, Drosophila hemocytes release soluble factors such as antimicrobial peptides, and cytokines to induce humoral responses. In addition, they participate in coagulation and wounding, and in development. To assess their role during infection with entomopathogenic nematodes, we depleted plasmatocytes and crystal cells, the two classes of hemocytes present in naive larvae by expressing proapoptotic proteins in order to produce hemocyte-free (Hml-apo, originally called Hemo(less)) larvae. Surprisingly, we found that Hml-apo larvae are still resistant to nematode infections. When further elucidating the immune status of Hml-apo larvae, we observe a shift in immune effector pathways including massive lamellocyte differentiation and induction of Toll-as well as repression of imd signaling. This leads to a pro-inflammatory state, characterized by the appearance of melanotic nodules in the hemolymph and to strong developmental defects including pupal lethality and leg defects in escapers. Further analysis suggests that most of the phenotypes we observe in Hml-apo larvae are alleviated by administration of antibiotics and by changing the food source indicating that they are mediated through the microbiota. Biochemical evidence identifies nitric oxide as a key phylogenetically conserved regulator in this process. Finally we show that the nitric oxide donor L-arginine similarly modifies the response against an early stage of tumor development in fly larvae.
  •  
3.
  •  
4.
  • Arefin, Badrul, et al. (author)
  • The Immune Phenotype of Three Drosophila Leukemia Models
  • 2017
  • In: G3. - : Oxford University Press (OUP). - 2160-1836. ; 7:7, s. 2139-2149
  • Journal article (peer-reviewed)abstract
    • Many leukemia patients suffer from dysregulation of their immune system, making them more susceptible to infections and leading to general weakening (cachexia). Both adaptive and innate immunity are affected. The fruit fly Drosophila melanogaster has an innate immune system, including cells of the myeloid lineage (hemocytes). To study Drosophila immunity and physiology during leukemia, we established three models by driving expression of a dominant-active version of the Ras oncogene (Ras(V12)) alone or combined with knockdowns of tumor suppressors in Drosophila hemocytes. Our results show that phagocytosis, hemocyte migration to wound sites, wound sealing, and survival upon bacterial infection of leukemic lines are similar to wild type. We find that in all leukemic models the two major immune pathways (Toll and Imd) are dysregulated. Toll-dependent signaling is activated to comparable extents as after wounding wild-type larvae, leading to a proinflammatory status. In contrast, Imd signaling is suppressed. Finally, we notice that adult tissue formation is blocked and degradation of cell masses during metamorphosis of leukemic lines, which is akin to the state of cancer-dependent cachexia. To further analyze the immune competence of leukemic lines, we used a natural infection model that involves insect-pathogenic nematodes. We identified two leukemic lines that were sensitive to nematode infections. Further characterization demonstrates that despite the absence of behavioral abnormalities at the larval stage, leukemic larvae show reduced locomotion in the presence of nematodes. Taken together, this work establishes new Drosophila models to study the physiological, immunological, and behavioral consequences of various forms of leukemia.
  •  
5.
  • Dziedziech, Alexis, et al. (author)
  • Data on Drosophila clots and hemocyte morphologies using GFP-tagged secretory proteins : Prophenoloxidase and transglutaminase
  • 2019
  • In: Data in Brief. - : Elsevier BV. - 2352-3409. ; 25
  • Journal article (peer-reviewed)abstract
    • Insect hemolymph coagulation: Kinetics of classically and non-classically secreted clotting factors Schmid et al., 2019. The linked article demonstrates the localization of two secretory proteins in Drosophila melanogaster, Prophenoloxidase (PPO2) and Transglutaminase-A (Tg) in hemocytes as well the clot with different tissue-specific drivers. Here we provide further data for the usefulness of the GFP-tagged version of the two crosslinking enzymes that are involved in clot hardening. The morphology of crystal cells is described using GFP-tagged PPO2 rather than with the use of antibodies in ex vivo hemolymph preparations. The use of the GFP-tagged proteins PPO2 and Tg is shown in additional contexts.
  •  
6.
  • Hauptmann, Giselbert, et al. (author)
  • Multi-target Chromogenic Whole-mount In Situ Hybridization for Comparing Gene Expression Domains in Drosophila Embryos
  • 2016
  • In: Journal of Visualized Experiments. - : MyJove Corporation. - 1940-087X. ; :107
  • Journal article (peer-reviewed)abstract
    • To analyze gene regulatory networks active during embryonic development and organogenesis it is essential to precisely define how the different genes are expressed in spatial relation to each other in situ. Multi-target chromogenic whole-mount in situ hybridization (MC-WISH) greatly facilitates the instant comparison of gene expression patterns, as it allows distinctive visualization of different mRNA species in contrasting colors in the same sample specimen. This provides the possibility to relate gene expression domains topographically to each other with high accuracy and to define unique and overlapping expression sites. In the presented protocol, we describe a MC-WISH procedure for comparing mRNA expression patterns of different genes in Drosophila embryos. Up to three RNA probes, each specific for another gene and labeled by a different hapten, are simultaneously hybridized to the embryo samples and subsequently detected by alkaline phosphatase-based colorimetric immunohistochemistry. The described procedure is detailed here for Drosophila, but works equally well with zebrafish embryos.
  •  
7.
  •  
8.
  • Krautz, Robert, et al. (author)
  • Damage signals in the insect immune response
  • 2014
  • In: Frontiers in Plant Science. - : Frontiers Media SA. - 1664-462X. ; 5
  • Research review (peer-reviewed)abstract
    • Insects and mammals share an ancient innate immune system comprising both humoral and cellular responses. The insect immune system consists of the fat body, which secretes effector molecules into the hemolymph and several classes of hemocytes, which reside in the hemolymph and of protective border epithelia. Key features of wound- and immune responses are shared between insect and mammalian immune systems including the mode of activation by commonly shared microbial (non-self) patterns and the recognition of these patterns by dedicated receptors. It is unclear how metazoan parasites in insects, which lack these shared motifs, are recognized. Research in recent years has demonstrated that during entry into the insect host, many eukaryotic pathogens leave traces that alert potential hosts of the damage they have afflicted. In accordance with terminology used in the mammalian immune systems, these signals have been dubbed danger- or damage-associated signals. Damage signals are necessary byproducts generated during entering hosts either by mechanical or proteolytic damage. Here, we briefly review the current stage of knowledge on how wound closure and wound healing during mechanical damage is regulated and how damage-related signals contribute to these processes. We also discuss how sensors of proteolytic activity induce insect innate immune responses. Strikingly damage-associated signals are also released from cells that have aberrant growth, including tumor cells. These signals may induce apoptosis in the damaged cells, the recruitment of immune cells to the aberrant tissue and even activate humoral responses. Thus, this ensures the removal of aberrant cells and compensatory proliferation to replace lost tissue. Several of these pathways may have been co-opted from wound healing and developmental processes.
  •  
9.
  • Krautz, Robert, 1986- (author)
  • Drosophila immune responses in a model for epithelial hypertrophy
  • 2016
  • Doctoral thesis (other academic/artistic)abstract
    • Apoptosis, differentiation and proliferation have to be tightly balanced and thus regulated to maintain tissue homeostasis. Stress, metabolic cues, genetic variability, infections and physiological host-commensal interactions influence this balance and thus need to be integrated. Therefore, beyond the discrimination between self and non-self (i.e., foreign) also damage inflicted on tissues under sterile conditions is perceived by the immune system due to altered tissue integrity. Growing knowledge of the interaction between the immune system and wounded or more generally altered tissues allows inferring on anti-tumorous immune responses, too. Despite the lack of adaptive immunity, Drosophila mounts solid and versatile innate immune responses that functionally and molecularly share many properties with their vertebrate counterparts. In fact, tissue overgrowth, tissue dysplasia or endogenous danger signaling activate systemic Toll-signaling in the fat body indicating a role for the Drosophila immune system in maintaining tissue homeostasis.Here we characterize systemic and local immune responses towards altered or transformed tissues by using a Drosophila hypertrophy model, which is based on the overexpression of a dominant-active variant of the small GTPase Ras (Ras85DG12V) in salivary glands and wing discs. We characterized the strong induction of hemocyte recruitment to the glands as a consequence of JNK-dependent MMP1-expression and basal membrane degradation. Apart from this cellular immune reaction, transcriptome profiling revealed comprehensive humoral immune responses mounted by the fat body that involved signatures of Toll- and imd-activation. Moreover, a novel tissue-autonomous response that was spatially restricted to the anterior end of the RasV12-expressing salivary gland itself was identified. While multiple immune genes were found to be upregulated in the anterior compartment as detected by RNA sequencing, particular focus was given to the effector peptide Drosomycin (Drs). Overexpression of Drs with RasV12 in the entire gland similar to the inhibition of the JNK-pathway was able to selectively rescue a characteristic set of RasV12-induced phenotypes, which ultimately blocks the recruitment of hemocytes. Thereby, local immune-related responses in RasV12-expressing salivary glands are able to restrict the tissue damage induced by hypertrophic growth.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view