SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kubrak Olga I.) "

Search: WFRF:(Kubrak Olga I.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kubrak, Olga I., et al. (author)
  • Transient effects of 2,4-dichlorophenoxyacetic acid (2,4-D) exposure on some metabolic and free radical processes in goldfish white muscle
  • 2013
  • In: Food and Chemical Toxicology. - : Elsevier BV. - 0278-6915 .- 1873-6351. ; 59, s. 356-361
  • Journal article (peer-reviewed)abstract
    • This study aims to assess effects of 96 h goldfish exposure to 1, 10 and 100 mg/L of the herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), on metabolic indices and free radical process markers in white muscle of a commercial fish, the goldfish Carassius auratus L. Most oxidative stress markers and antioxidant enzymes were not affected at 2,4-D fish treatment. 2,4-D fish exposure induced the elevated levels of total (by 46% and 40%) and reduced (by 77% and 73%) glutathione in muscles of goldfish of 10 mg/L 2,4-D and recovery (after 100 mg/L of 2,4-D exposure) groups, respectively. However, in muscles of 100 mg/L 2,4-D exposed goldfish these parameters were depleted (by 47% and 64%). None of investigated parameters of protein and carbohydrate metabolisms changed in white muscles of 2,4-D exposed fish, with exception of lactate dehydrogenase activity, which was slightly (by 11-15%) elevated in muscles of goldfish exposed to 10-100 mg/L of 2,4-D, but also recovered. Thus, the short term exposure of goldfish to the selected concentrations of 2,4-D does not substantially affect their white muscle, suggesting the absence of any effect under the environmentally relevant concentrations. .
  •  
2.
  • Kubrak, Olga I., et al. (author)
  • Adaptation to fluctuating environments in a selection experiment with Drosophila melanogaster
  • 2017
  • In: Ecology and Evolution. - : Wiley. - 2045-7758. ; 7:11, s. 3796-3807
  • Journal article (peer-reviewed)abstract
    • A fundamental question in life-history evolution is how organisms cope with fluctuating environments, including variation between stressful and benign conditions. For short-lived organisms, environments commonly vary between generations. Using a novel experimental design, we exposed wild-derived Drosophila melanogaster to three different selection regimes: one where generations alternated between starvation and benign conditions, and starvation was always preceded by early exposure to cold; another where starvation and benign conditions alternated in the same way, but cold shock sometimes preceded starvation and sometimes benign conditions; and a third where conditions were always benign. Using six replicate populations per selection regime, we found that selected flies increased their starvation resistance, most strongly for the regime where cold and starvation were reliably combined, and this occurred without decreased fecundity or extended developmental time. The selected flies became stress resistant, displayed a pronounced increase in early life food intake and resource storage. In contrast to previous experiments selecting for increased starvation resistance in D. melanogaster, we did not find increased storage of lipids as the main response, but instead that, in particular for females, storage of carbohydrates was more pronounced. We argue that faster mobilization of carbohydrates is advantageous in fluctuating environments and conclude that the phenotype that evolved in our experiment corresponds to a compromise between the requirements of stressful and benign environments.
  •  
3.
  • Kubrak, Olga I., et al. (author)
  • Characterization of Reproductive Dormancy in Male Drosophila melanogaster
  • 2016
  • In: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 7
  • Journal article (peer-reviewed)abstract
    • Insects are known to respond to seasonal and adverse environmental changes by entering dormancy, also known as diapause. In some insect species, including Drosophila melanogaster, dormancy occurs in the adult organism and postpones reproduction. This adult dormancy has been studied in female flies where it is characterized by arrested development of ovaries, altered nutrient stores, lowered metabolism, increased stress and immune resistance and drastically extended lifespan. Male dormancy, however, has not been investigated in D. melanogaster, and its physiology is poorly known in most insects. Here we show that unmated 3-6 h old male flies placed at low temperature (11 degrees C) and short photoperiod (10 Light:14 Dark) enter a state of dormancy with arrested spermatogenesis and development of testes and male accessory glands. Over 3 weeks of diapause we see a dynamic increase in stored carbohydrates and an initial increase and then a decrease in lipids. We also note an up-regulated expression of genes involved in metabolism, stress responses and innate immunity. Interestingly, we found that male flies that entered reproductive dormancy do not attempt to mate females kept under non-diapause conditions (25 degrees C, 1 2L:1 2D), and conversely non-diapausing males do not mate females in dormancy. In summary, our study shows that male D. melanogaster can enter reproductive dormancy. However, our data suggest that dormant male flies deplete stored nutrients faster than females, studied earlier, and that males take longer to recover reproductive capacity after reintroduction to non-diapause conditions.
  •  
4.
  • Kubrak, Olga I., et al. (author)
  • Systemic corazonin signalling modulates stress responses and metabolism in Drosophila
  • 2016
  • In: Open Biology. - : The Royal Society. - 2046-2441. ; 6:11
  • Journal article (peer-reviewed)abstract
    • Stress triggers cellular and systemic reactions in organisms to restore homeostasis. For instance, metabolic stress, experienced during starvation, elicits a hormonal response that reallocates resources to enable food search and readjustment of physiology. Mammalian gonadotropin-releasing hormone (GnRH) and its insect orthologue, adipokinetic hormone (AKH), are known for their roles in modulating stress-related behaviour. Here we show that corazonin (Crz), a peptide homologous to AKH/GnRH, also alters stress physiology in Drosophila. The Crz receptor (CrzR) is expressed in salivary glands and adipocytes of the liver-like fat body, and CrzR knockdown targeted simultaneously to both these tissues increases the fly's resistance to starvation, desiccation and oxidative stress, reduces feeding, alters expression of transcripts of Drosophila insulin-like peptides (DILPs), and affects gene expression in the fat body. Furthermore, in starved flies, CrzR-knockdown increases circulating and stored carbohydrates. Thus, our findings indicate that elevated systemic Crz signalling during stress coordinates increased food intake and diminished energy stores to regain metabolic homeostasis. Our study suggests that an ancient stress-peptide in Urbilateria evolved to give rise to present-day GnRH, AKH and Crz signalling systems.
  •  
5.
  • Kubrak, Olga I., et al. (author)
  • The Sleeping Beauty : How Reproductive Diapause Affects Hormone Signaling, Metabolism, Immune Response and Somatic Maintenance in Drosophila melanogaster
  • 2014
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:11
  • Journal article (peer-reviewed)abstract
    • Some organisms can adapt to seasonal and other environmental challenges by entering a state of dormancy, diapause. Thus, insects exposed to decreased temperature and short photoperiod enter a state of arrested development, lowered metabolism, and increased stress resistance. Drosophila melanogaster females can enter a shallow reproductive diapause in the adult stage, which drastically reduces organismal senescence, but little is known about the physiology and endocrinology associated with this dormancy, and the genes involved in its regulation. We induced diapause in D. melanogaster and monitored effects over 12 weeks on dynamics of ovary development, carbohydrate and lipid metabolism, as well as expression of genes involved in endocrine signaling, metabolism and innate immunity. During diapause food intake diminishes drastically, but circulating and stored carbohydrates and lipids are elevated. Gene transcripts of glucagonand insulin-like peptides increase, and expression of several target genes of these peptides also change. Four key genes in innate immunity can be induced by infection in diapausing flies, and two of these, drosomycin and cecropin A1, are upregulated by diapause independently of infection. Diapausing flies display very low mortality, extended lifespan and decreased aging of the intestinal epithelium. Many phenotypes induced by diapause are reversed after one week of recovery from diapause conditions. Furthermore, mutant flies lacking specific insulin-like peptides (dilp5 and dilp2-3) display increased diapause incidence. Our study provides a first comprehensive characterization of reproductive diapause in D. melanogaster, and evidence that glucagon- and insulin-like signaling are among the key regulators of the altered physiology during this dormancy.
  •  
6.
  • Kucerova, Lucie, et al. (author)
  • Slowed aging during reproductive dormancy is reflected in genome-wide transcriptome changes in Drosophila melanogaster
  • 2016
  • In: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 17
  • Journal article (peer-reviewed)abstract
    • Background: In models extensively used in studies of aging and extended lifespan, such as C. elegans and Drosophila, adult senescence is regulated by gene networks that are likely to be similar to ones that underlie lifespan extension during dormancy. These include the evolutionarily conserved insulin/IGF, TOR and germ line-signaling pathways. Dormancy, also known as dauer stage in the larval worm or adult diapause in the fly, is triggered by adverse environmental conditions, and results in drastically extended lifespan with negligible senescence. It is furthermore characterized by increased stress resistance and somatic maintenance, developmental arrest and reallocated energy resources. In the fly Drosophila melanogaster adult reproductive diapause is additionally manifested in arrested ovary development, improved immune defense and altered metabolism. However, the molecular mechanisms behind this adaptive lifespan extension are not well understood. Results: A genome wide analysis of transcript changes in diapausing D. melanogaster revealed a differential regulation of more than 4600 genes. Gene ontology (GO) and KEGG pathway analysis reveal that many of these genes are part of signaling pathways that regulate metabolism, stress responses, detoxification, immunity, protein synthesis and processes during aging. More specifically, gene readouts and detailed mapping of the pathways indicate downregulation of insulin-IGF (IIS), target of rapamycin (TOR) and MAP kinase signaling, whereas Toll-dependent immune signaling, Jun-N-terminal kinase (JNK) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways are upregulated during diapause. Furthermore, we detected transcriptional regulation of a large number of genes specifically associated with aging and longevity. Conclusions: We find that many affected genes and signal pathways are shared between dormancy, aging and lifespan extension, including IIS, TOR, JAK/STAT and JNK. A substantial fraction of the genes affected by diapause have also been found to alter their expression in response to starvation and cold exposure in D. melanogaster, and the pathways overlap those reported in GO analysis of other invertebrates in dormancy or even hibernating mammals. Our study, thus, shows that D. melanogaster is a genetically tractable model for dormancy in other organisms and effects of dormancy on aging and lifespan.
  •  
7.
  • Nässel, Dick R., et al. (author)
  • Factors that regulate insulin producing cells and their output in Drosophila
  • 2013
  • In: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 4
  • Research review (peer-reviewed)abstract
    • Insulin-like peptides (ILPs) and growth factors (IGFs) not only regulate development, growth, reproduction, metabolism, stress resistance, and lifespan, but also certain behaviors and cognitive functions. ILPs, IGFs, their tyrosine kinase receptors and downstream signaling components have been largely conserved over animal evolution. Eight ILPs have been identified in Drosophila (DILP1-8) and they display cell and stage-specific expression patterns. Only one insulin receptor, dInR, is known in Drosophila and most other invertebrates. Nevertheless, the different DILPs are independently regulated transcriptionally and appear to have distinct functions, although some functional redundancy has been revealed. This review summarizes what is known about regulation of production and release of DILPs in Drosophila with focus on insulin signaling in the daily life of the fly. Under what conditions are DILP-producing cells (IPCs) activated and which factors have been identified in control of IPC activity in larvae and adult flies? The brain IPCs that produce DILP2, 3 and 5 are indirectly targeted by DILP6 and a leptin-like factor from the fat body, as well as directly by a few neurotransmitters and neuropeptides. Serotonin, octopamine, GABA, short neuropeptide F (sNPF), corazonin and tachykinin-related peptide have been identified in Drosophila as regulators of IPCs. The GABAergic cells that inhibit IPCs and DILP release are in turn targeted by a leptin-like peptide (unpaired 2) from the fat body, and the IPC-stimulating corazonin/sNPF neurons may be targeted by gut-derived peptides. We also discuss physiological conditions under which IPC activity may be regulated, including nutritional states, stress and diapause induction.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view