SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kuch Wolfgang) "

Search: WFRF:(Kuch Wolfgang)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Arruda, Lucas M., et al. (author)
  • Modifying the Magnetic Anisotropy of an Iron Porphyrin Molecule by an on-Surface Ring-Closure Reaction
  • 2019
  • In: The Journal of Physical Chemistry C. - : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 123:23, s. 14547-14555
  • Journal article (peer-reviewed)abstract
    • The magnetic properties of adsorbed metalloporphyrin molecules can be altered or tuned by the substrate, additional axial ligands, or changes to the molecules' macrocycle. These modifications influence the electronic configuration of the fourfold-coordinated central metal ion that is responsible for the metalloporphyrins' magnetic properties. We report a substantial increase in the effective spin moment obtained from sum-rule analysis of X-ray magnetic circular dichroism for an iron metalloporphyrin molecule on Au(111) through its conversion from iron(II)-octaethylporphyrin to iron(II)-tetrabenzoporphyrin in a surface-assisted ring-closure ligand reaction. Density functional theory calculations with additional strong Coulomb correlation (DFT+U) show that the on-surface reaction alters the conformation of the molecule, increasing its planarity and the ion-surface distance. A spin-Hamiltonian fit of the magnetization as a function of field reveals a substantial increase in the intra-atomic magnetic dipole term (T-z) and a decrease in the magnitude of the easy-plane anisotropy upon ring closure. This consequence of the ring closure demonstrates how new magnetic properties can be obtained from on-surface reactions, resulting here in significant modifications to the magnetic anisotropy of the Fe ion, and sheds light onto the molecule-substrate interaction in these systems.
  •  
2.
  • Arruda, Lucas M., et al. (author)
  • Surface-orientation- and ligand-dependent quenching of the spin magnetic moment of Co porphyrins adsorbed on Cu substrates
  • 2020
  • In: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 22:22, s. 12688-12696
  • Journal article (peer-reviewed)abstract
    • Porphyrin molecules are particularly interesting candidates for spintronic applications due to their bonding flexibility, which allows to modify their properties substantially by the addition or transformation of ligands. Here, we investigate the electronic and magnetic properties of cobalt octaethylporphyrin (CoOEP), deposited on copper substrates with two distinct crystallographic surface orientations, Cu(100) and Cu(111), with X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). A significant magnetic moment is present in the Co ions of the molecules deposited on Cu(100), but it is completely quenched on Cu(111). Heating the molecules on both substrates to 500 K induces a ring-closure reaction with cobalt tetrabenzoporphyrin (CoTBP) as reaction product. In these molecules, the magnetic moment is quenched on both surfaces. Our XMCD and XAS measurements suggest that the filling of the dz(2)orbital leads to a non-integer valence state and causes the quench of the spin moments on all samples except CoOEP/Cu(100), where the molecular conformation induces variations to the ligand field that lift the quench. We further employ density functional theory calculations, supplemented with on-site Coulomb correlations (DFT+U), to study the adsorption of these spin-bearing molecules on the Cu substrates. Our calculations show that charge transfer from the Cu substrates as well as charge redistribution within the Co 3d orbitals lead to the filling of the Co minority spin dz(2)orbital, causing a 'turning off' of the exchange splitting and quenching of the spin moment at the Co magnetic centers. Our investigations suggest that, by this mechanism, molecule-substrate interactions can be used to control the quenching of the magnetic moments of the adsorbed molecules.
  •  
3.
  • Bhandary, Sumanta, et al. (author)
  • Manipulation of spin state of iron porphyrin by chemisorption on magnetic substrates
  • 2013
  • In: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 88:2
  • Journal article (peer-reviewed)abstract
    • One of the key factors behind the rapid evolution of molecular spintronics is the efficient realization of spin manipulation of organic molecules with a magnetic center. The spin state of such molecules may depend crucially on the interaction with the substrate on which they are adsorbed. In this paper we demonstrate, using ab initio density functional calculations, that the stabilization of a high spin state of an iron porphyrin (FeP) molecule can be achieved via chemisorption on magnetic substrates of different species and orientations, viz., Co(001), Ni(001), Ni(110), and Ni(111). The signature of chemisorption of FeP on magnetic substrates is evident from broad features in N K x-ray absorption (XA) and Fe L-2,L-3 x-ray magnetic circular dichroism (XMCD) measurements. Our theoretical calculations show that the strong covalent interaction with the substrate increases Fe-N bond lengths in FeP and hence a switching to a high spin state (S = 2) from an intermediate spin state (S = 1) is achieved. Due to chemisorption, ferromagnetic exchange interaction is established through a direct exchange between Fe and substrate magnetic atoms as well as through an indirect exchange via the N atoms in FeP. The mechanism of exchange interaction is further analyzed by considering structural models constructed from ab initio calculations. Also, it is found that the exchange interaction between Fe in FeP and a Ni substrate is almost 4 times smaller than with a Co substrate. Finally, we illustrate the possibility of detecting a change in the molecular spin state by XMCD, Raman spectroscopy, and spin-polarized scanning tunneling microscopy.
  •  
4.
  • Durr, Hermann A., et al. (author)
  • A Closer Look Into Magnetism : Opportunities With Synchrotron Radiation
  • 2009
  • In: IEEE transactions on magnetics. - 0018-9464 .- 1941-0069. ; 45:1, s. 15-57
  • Research review (peer-reviewed)abstract
    • The unique properties of synchrotron radiation, such as broad energy spectrum, variable light polarization, and flexible time structure, have made it an enormously powerful tool in the study of magnetic phenomena and materials. The refinement of experimental techniques has led to many new research opportunities, keeping up with the challenges put up by modern magnetism research. In this contribution, we review some of the recent developments in the application of synchrotron radiation and particularly soft X-rays to current problems in magnetism, and we discuss future perspectives.
  •  
5.
  •  
6.
  • Huttmann, Felix, et al. (author)
  • Europium Cyclooctatetraene Nanowire Carpets : A Low-Dimensional, Organometallic, and Ferromagnetic Insulator
  • 2019
  • In: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 10:5, s. 911-917
  • Journal article (peer-reviewed)abstract
    • We investigate the magnetic and electronic properties of europium cyclooctatetraene (EuCot) nanowires by means of low-temperature X-ray magnetic circular dichroism (XMCD) and scanning tunneling microscopy (STM) and spectroscopy (STS). The EuCot nanowires are prepared in situ on a graphene surface. STS measurements identify EuCot as an insulator with a minority band gap of 2.3 eV. By means of Eu M5,4 edge XMCD, orbital and spin magnetic moments of (-0.1 ± 0.3)μB and (+7.0 ± 0.6)μB, respectively, were determined. Field-dependent measurements of the XMCD signal at the Eu M5 edge show hysteresis for grazing X-ray incidence at 5 K, thus confirming EuCot as a ferromagnetic material. Our density functional theory calculations reproduce the experimentally observed minority band gap. Modeling the experimental results theoretically, we find that the effective interatomic exchange interaction between Eu atoms is on the order of millielectronvolts, that magnetocrystalline anisotropy energy is roughly half as big, and that dipolar energy is approximately ten times lower.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view