SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kuhn McKenzie) "

Search: WFRF:(Kuhn McKenzie)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Kuhn, McKenzie A., et al. (author)
  • BAWLD-CH4 : a comprehensive dataset of methane fluxes from boreal and arctic ecosystems
  • 2021
  • In: Earth System Science Data. - : Copernicus Gesellschaft MBH. - 1866-3508 .- 1866-3516. ; 13:11, s. 5151-5189
  • Journal article (peer-reviewed)abstract
    • Methane (CH4) emissions from the boreal and arctic region are globally significant and highly sensitive to climate change. There is currently a wide range in estimates of high-latitude annual CH4 fluxes, where estimates based on land cover inventories and empirical CH4 flux data or process models (bottom-up approaches) generally are greater than atmospheric inversions (top-down approaches). A limitation of bottom-up approaches has been the lack of harmonization between inventories of site-level CH4 flux data and the land cover classes present in high-latitude spatial datasets. Here we present a comprehensive dataset of small-scale, surface CH4 flux data from 540 terrestrial sites (wetland and non-wetland) and 1247 aquatic sites (lakes and ponds), compiled from 189 studies. The Boreal-Arctic Wetland and Lake Methane Dataset (BAWLD-CH4) was constructed in parallel with a compatible land cover dataset, sharing the same land cover classes to enable refined bottom-up assessments. BAWLD-CH4 includes information on site-level CH4 fluxes but also on study design (measurement method, timing, and frequency) and site characteristics (vegetation, climate, hydrology, soil, and sediment types, permafrost conditions, lake size and depth, and our determination of land cover class). The different land cover classes had distinct CH4 fluxes, resulting from definitions that were either based on or co-varied with key environmental controls. Fluxes of CH4 from terrestrial ecosystems were primarily influenced by water table position, soil temperature, and vegetation composition, while CH4 fluxes from aquatic ecosystems were primarily influenced by water temperature, lake size, and lake genesis. Models could explain more of the between-site variability in CH4 fluxes for terrestrial than aquatic ecosystems, likely due to both less precise assessments of lake CH4 fluxes and fewer consistently reported lake site characteristics. Analysis of BAWLD-CH4 identified both land cover classes and regions within the boreal and arctic domain, where future studies should be focused, alongside methodological approaches. Overall, BAWLD-CH4 provides a comprehensive dataset of CH4 emissions from high-latitude ecosystems that are useful for identifying research opportunities, for comparison against new field data, and model parameterization or validation.
  •  
5.
  • Kuhn, McKenzie A., et al. (author)
  • Controls on Stable Methane Isotope Values in Northern Peatlands and Potential Shifts in Values Under Permafrost Thaw Scenarios
  • 2024
  • In: Journal of Geophysical Research - Biogeosciences. - : American Geophysical Union (AGU). - 2169-8953 .- 2169-8961. ; 129:7
  • Journal article (peer-reviewed)abstract
    • Northern peatlands are a globally significant source of methane (CH4), and emissions are projected to increase due to warming and permafrost loss. Understanding the microbial mechanisms behind patterns in CH4 production in peatlands will be key to predicting annual emissions changes, with stable carbon isotopes (δ13C-CH4) being a powerful tool for characterizing these drivers. Given that δ13C-CH4 is used in top-down atmospheric inversion models to partition sources, our ability to model CH4 production pathways and associated δ13C-CH4 values is critical. We sought to characterize the role of environmental conditions, including hydrologic and vegetation patterns associated with permafrost thaw, on δ13C-CH4 values from high-latitude peatlands. We measured porewater and emitted CH4 stable isotopes, pH, and vegetation composition from five boreal-Arctic peatlands. Porewater δ13C-CH4 was strongly associated with peatland type, with δ13C enriched values obtained from more minerotrophic fens (−61.2 ± 9.1‰) compared to permafrost-free bogs (−74.1 ± 9.4‰) and raised permafrost bogs (−81.6 ± 11.5‰). Variation in porewater δ13C-CH4 was best explained by sedge cover, CH4 concentration, and the interactive effect of peatland type and pH (r2 = 0.50, p < 0.001). Emitted δ13C-CH4 varied greatly but was positively correlated with porewater δ13C-CH4. We calculated a mixed atmospheric δ13C-CH4 value for northern peatlands of −65.3 ± 7‰ and show that this value is more sensitive to landscape drying than wetting under permafrost thaw scenarios. Our results suggest northern peatland δ13C-CH4 values are likely to shift in the future which has important implications for source partitioning in atmospheric inversion models.
  •  
6.
  • Kuhn, McKenzie A., et al. (author)
  • High ebullitive, millennial-aged greenhouse gas emissions from thermokarst expansion of peatland lakes in boreal western Canada
  • 2023
  • In: Limnology and Oceanography. - : Association for the Sciences of Limnology and Oceanography. - 0024-3590 .- 1939-5590. ; 68:2, s. 498-513
  • Journal article (peer-reviewed)abstract
    • Methane (CH4) and carbon dioxide (CO2) emissions from small peatland lakes may be highly sensitive to climate warming and thermokarst expansion caused by permafrost thaw. We studied effects of thermokarst expansion on ebullitive CH4 and CO2 fluxes and diffusive CH4 fluxes from a peatland thaw lake in boreal western Canada. Ebullitive CH4 fluxes from the thaw edge (236 ± 61 mg CH4 m−2 d−1) were double and quadruple that of the stable lake edge and center, respectively. Modeled diffusive CH4 fluxes did not differ between the thawing and stable edges (~ 50 mg CH4 m−2 d−1) but were double that of the center. Radiocarbon (14C) analysis of CH4 and CO2 bubbles from the thaw edge was older (~ 1211 and 1420 14C yr BP) than from the stable edge and the center (modern to ~ 102 and 50 14C yr BP, respectively). Incubations indicated that deep, old peat sediment was more labile along the thaw edge than in the center. While our study suggested increase CH4 emissions partly derived from millennial-aged carbon along the thaw edge, accounting for these emissions only increased the estimated total lake CH4 emissions by ~ 10%, which is a much smaller contribution than measured from thermokarst lakes in yedoma regions. Our study suggests that it is important to account for landscape history and lake types when studying the processes that govern the sensitivity of lake greenhouse gas emissions to climate change.
  •  
7.
  • Kuhn, McKenzie A., et al. (author)
  • Opposing Effects of Climate and Permafrost Thaw on CH4 and CO2 Emissions From Northern Lakes
  • 2021
  • In: AGU Advances. - : American Geophysical Union (AGU). - 2576-604X. ; 2:4
  • Journal article (peer-reviewed)abstract
    • Small, organic-rich lakes are important sources of methane (CH4) and carbon dioxide (CO2) to the atmosphere, yet the sensitivity of emissions to climate warming is poorly constrained and potentially influenced by permafrost thaw. Here, we monitored emissions from 20 peatland lakes across a 1,600 km permafrost transect in boreal western Canada. Contrary to expectations, we observed a shift from source to sink of CO2 for lakes warmer regions, driven by greater primary productivity associated with greater hydrological connectivity to lakes and nutrient availability in the absence of permafrost. Conversely, an 8-fold increase in CH4 emissions in warmer regions was associated with water temperature and shifts in microbial communities and dominant anaerobic processes. Our results suggest that the net radiative forcing from altered greenhouse gas emissions of northern peatland lakes this century will be dominated by increasing CH4 emissions and only partially offset by reduced CO2 emissions.
  •  
8.
  • Kuhn, McKenzie, et al. (author)
  • Emissions from thaw ponds largely offset the carbon sink of northern permafrost wetlands
  • 2018
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 8
  • Journal article (peer-reviewed)abstract
    • Northern regions have received considerable attention not only because the effects of climate change are amplified at high latitudes but also because this region holds vast amounts of carbon (C) stored in permafrost. These carbon stocks are vulnerable to warming temperatures and increased permafrost thaw and the breakdown and release of soil C in the form of carbon dioxide (CO2) and methane (CH4). The majority of research has focused on quantifying and upscaling the effects of thaw on CO2 and CH4 emissions from terrestrial systems. However, small ponds formed in permafrost wetlands following thawing have been recognized as hotspots for C emissions. Here, we examined the importance of small ponds for C fluxes in two permafrost wetland ecosystems in northern Sweden. Detailed flux estimates of thaw ponds during the growing season show that ponds emit, on average (±SD), 279 ± 415 and 7 ± 11 mmol C m−2 d−1 of CO2 and CH4, respectively. Importantly, addition of pond emissions to the total C budget of the wetland decreases the C sink by ~39%. Our results emphasize the need for integrated research linking C cycling on land and in water in order to make correct assessments of contemporary C balances.
  •  
9.
  • Olefeldt, David, et al. (author)
  • The Boreal-Arctic Wetland and Lake Dataset (BAWLD)
  • 2021
  • In: Earth System Science Data. - : Copernicus Gesellschaft MBH. - 1866-3508 .- 1866-3516. ; 13:11, s. 5127-5149
  • Journal article (peer-reviewed)abstract
    • Methane emissions from boreal and arctic wetlands, lakes, and rivers are expected to increase in response to warming and associated permafrost thaw. However, the lack of appropriate land cover datasets for scaling field-measured methane emissions to circumpolar scales has contributed to a large uncertainty for our understanding of present-day and future methane emissions. Here we present the BorealArctic Wetland and Lake Dataset (BAWLD), a land cover dataset based on an expert assessment, extrapolated using random forest modelling from available spatial datasets of climate, topography, soils, permafrost conditions, vegetation, wetlands, and surface water extents and dynamics. In BAWLD, we estimate the fractional coverage of five wetland, seven lake, and three river classes within 0.5 x 0.5 degrees grid cells that cover the northern boreal and tundra biomes (17 % of the global land surface). Land cover classes were defined using criteria that ensured distinct methane emissions among classes, as indicated by a co-developed comprehensive dataset of methane flux observations. In BAWLD, wetlands occupied 3.2 x 10(6) km(2) (14 % of domain) with a 95 % confidence interval between 2.8 and 3.8 x 10(6) km(2). Bog, fen, and permafrost bog were the most abundant wetland classes, covering similar to 28 % each of the total wetland area, while the highest-methane-emitting marsh and tundra wetland classes occupied 5 % and 12 %, respectively. Lakes, defined to include all lentic open-water ecosystems regardless of size, covered 1.4 x 10(6) km(2) (6 % of domain). Low-methane-emitting large lakes (>10 km(2)) and glacial lakes jointly represented 78 % of the total lake area, while high-emitting peatland and yedoma lakes covered 18 % and 4 %, respectively. Small (<0.1 km(2)) glacial, peatland, and yedoma lakes combined covered 17 % of the total lake area but contributed disproportionally to the overall spatial uncertainty in lake area with a 95 % confidence interval between 0.15 and 0.38 x 10(6) km(2). Rivers and streams were estimated to cover 0.12 x 10(6) km(2) (0.5 % of domain), of which 8 % was associated with high-methane-emitting headwaters that drain organic-rich landscapes. Distinct combinations of spatially co-occurring wetland and lake classes were identified across the BAWLD domain, allowing for the mapping of "wetscapes" that have characteristic methane emission magnitudes and sensitivities to climate change at regional scales. With BAWLD, we provide a dataset which avoids double-accounting of wetland, lake, and river extents and which includes confidence intervals for each land cover class. As such, BAWLD will be suitable for many hydrological and biogeochemical modelling and upscaling efforts for the northern boreal and arctic region, in particular those aimed at improving assessments of current and future methane emissions.
  •  
10.
  • Ramage, Justine, 1988-, et al. (author)
  • The Net GHG Balance and Budget of the Permafrost Region (2000–2020) From Ecosystem Flux Upscaling
  • 2024
  • In: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 38:4
  • Journal article (peer-reviewed)abstract
    • The northern permafrost region has been projected to shift from a net sink to a net source of carbon under global warming. However, estimates of the contemporary net greenhouse gas (GHG) balance and budgets of the permafrost region remain highly uncertain. Here, we construct the first comprehensive bottom-up budgets of CO2, CH4, and N2O across the terrestrial permafrost region using databases of more than 1000 in situ flux measurements and a land cover-based ecosystem flux upscaling approach for the period 2000–2020. Estimates indicate that the permafrost region emitted a mean annual flux of 12 (−606, 661) Tg CO2–C yr−1, 38 (22, 53) Tg CH4–C yr−1, and 0.67 (0.07, 1.3) Tg N2O–N yr−1 to the atmosphere throughout the period. Thus, the region was a net source of CH4 and N2O, while the CO2 balance was near neutral within its large uncertainties. Undisturbed terrestrial ecosystems had a CO2 sink of −340 (−836, 156) Tg CO2–C yr−1. Vertical emissions from fire disturbances and inland waters largely offset the sink in vegetated ecosystems. When including lateral fluxes for a complete GHG budget, the permafrost region was a net source of C and N, releasing 144 (−506, 826) Tg C yr−1 and 3 (2, 5) Tg N yr−1. Large uncertainty ranges in these estimates point to a need for further expansion of monitoring networks, continued data synthesis efforts, and better integration of field observations, remote sensing data, and ecosystem models to constrain the contemporary net GHG budgets of the permafrost region and track their future trajectory.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11
Type of publication
journal article (11)
Type of content
peer-reviewed (9)
other academic/artistic (2)
Author/Editor
Olefeldt, David (6)
Kuhn, I (3)
Mollby, R (3)
Bastviken, David (3)
Varner, Ruth K. (3)
Hart, M. (3)
show more...
Natali, Susan M. (2)
Turetsky, Merritt R. (2)
Colque-Navarro, P (2)
Crill, Patrick (2)
Iversen, A. (2)
Juutinen, Sari (2)
Schuur, Edward A. G. (1)
McGuire, A. David (1)
Tank, Suzanne E. (1)
Hugelius, Gustaf (1)
Rogers, Brendan M. (1)
Schaedel, Christina (1)
Virtanen, Tarmo (1)
Hugelius, Gustaf, 19 ... (1)
Turetsky, Merritt (1)
Voigt, Carolina (1)
Ciais, Philippe (1)
Futter, Martyn (1)
Johansson, Margareta (1)
Canadell, Josep G. (1)
Poulter, Benjamin (1)
Giesler, Reiner (1)
Kokorite, Ilga (1)
Peacock, Michael (1)
Mesman, Jorrit P., 1 ... (1)
Bansal, Sheel (1)
Finkelstein, Sarah A ... (1)
Waldrop, Mark P. (1)
Karlsson, Jan, 1974- (1)
Bastos, Ana (1)
Crill, Patrick M. (1)
Helbig, Manuel (1)
Harris, Lorna I. (1)
Hodgkins, Suzanne B. (1)
McCalley, Carmody K. (1)
Chanton, Jeffrey P. (1)
Rich, Virginia I. (1)
Aurela, Mika (1)
Virkkala, Anna-Maria (1)
Bikse, Janis (1)
Grosse, Guido (1)
Parmentier, Frans-Ja ... (1)
Euskirchen, Eugénie ... (1)
MacIntyre, Sally (1)
show less...
University
Uppsala University (4)
Stockholm University (3)
Linköping University (3)
Karolinska Institutet (3)
Lund University (2)
Umeå University (1)
show more...
Swedish University of Agricultural Sciences (1)
show less...
Language
English (11)
Research subject (UKÄ/SCB)
Natural sciences (8)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view