SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kuncarayakti Hanindyo) "

Search: WFRF:(Kuncarayakti Hanindyo)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ergon, Mattias, 1967-, et al. (author)
  • Light curve and spectral modelling of the type IIb SN 2020acat. Evidence for a strong Ni bubble effect on the diffusion time
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 683
  • Journal article (peer-reviewed)abstract
    • We use the light-curve and spectral synthesis code JEKYLL to calculate a set of macroscopically mixed type IIb supernova (SN) models, which are compared to both previously published and new late-phase observations of SN 2020acat. The models differ in the initial mass, in the radial mixing and expansion of the radioactive material, and in the properties of the hydrogen envelope. The best match to the photospheric and nebular spectra and light curves of SN 2020acat is found for a model with an initial mass of 17 M⊙, strong radial mixing and expansion of the radioactive material, and a 0.1 M⊙ hydrogen envelope with a low hydrogen mass fraction of 0.27. The most interesting result is that strong expansion of the clumps containing radioactive material seems to be required to fit the observations of SN 2020acat both in the diffusion phase and in the nebular phase. These Ni bubbles are expected to expand due to heating from radioactive decays, but the degree of expansion is poorly constrained. Without strong expansion, there is a tension between the diffusion phase and the subsequent evolution, and models that fit the nebular phase produce a diffusion peak that is too broad. The diffusion-phase light curve is sensitive to the expansion of the Ni bubbles because the resulting Swiss-cheese-like geometry decreases the effective opacity and therefore the diffusion time. This effect has not been taken into account in previous light-curve modelling of stripped-envelope SNe, which may lead to a systematic underestimate of their ejecta masses. In addition to strong expansion, strong mixing of the radioactive material also seems to be required to fit the diffusion peak. It should be emphasized, however, that JEKYLL is limited to a geometry that is spherically symmetric on average, and large-scale asymmetries may also play a role. The relatively high initial mass found for the progenitor of SN 2020acat places it at the upper end of the mass distribution of type IIb SN progenitors, and a single-star origin cannot be excluded.
  •  
2.
  • Fiore, Achille, et al. (author)
  • Detailed spectrophotometric analysis of the superluminous and fast evolving SN 2019neq
  • 2024
  • In: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 527:3, s. 6473-6494
  • Journal article (peer-reviewed)abstract
    • SN 2019neq was a very fast evolving superluminous supernova. At a redshift z = 0.1059, its peak absolute magnitude was −21.5 ± 0.2 mag in g band. In this work, we present data and analysis from an extensive spectrophotometric follow-up campaign using multiple observational facilities. Thanks to a nebular spectrum of SN 2019neq, we investigated some of the properties of the host galaxy at the location of SN 2019neq and found that its metallicity and specific star formation rate are in a good agreement with those usually measured for SLSNe-I hosts. We then discuss the plausibility of the magnetar and the circumstellar interaction scenarios to explain the observed light curves, and interpret a nebular spectrum of SN 2019neq using published SUMO radiative-transfer models. The results of our analysis suggest that the spin-down radiation of a millisecond magnetar with a magnetic field B ≃ 6×1014 G could boost the luminosity of SN 2019neq.
  •  
3.
  •  
4.
  • Kuncarayakti, Hanindyo, et al. (author)
  • Direct Evidence of Two-component Ejecta in Supernova 2016gkg from Nebular Spectroscopy
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:2
  • Journal article (peer-reviewed)abstract
    • Spectral observations of the type-IIb supernova (SN) 2016gkg at 300-800 days are reported. The spectra show nebular characteristics, revealing emission from the progenitor star's metal-rich core and providing clues to the kinematics and physical conditions of the explosion. The nebular spectra are dominated by emission lines of [O i] lambda lambda 6300, 6364 and [Ca ii] lambda lambda 7292, 7324. Other notable, albeit weaker, emission lines include Mg I] lambda 4571, [Fe ii] lambda 7155, O I lambda 7774, Ca II triplet, and a broad, boxy feature at the location of H alpha. Unlike in other stripped-envelope SNe, the [O i] doublet is clearly resolved due to the presence of strong narrow components. The doublet shows an unprecedented emission line profile consisting of at least three components for each [O i]lambda 6300, 6364 line: a broad component (width similar to 2000 km s(-1)), and a pair of narrow blue and red components (width similar to 300 km s(-1)) mirrored against the rest velocity. The narrow component appears also in other lines, and is conspicuous in [O i]. This indicates the presence of multiple distinct kinematic components of material at low and high velocities. The low-velocity components are likely to be produced by a dense, slow-moving emitting region near the center, while the broad components are emitted over a larger volume. These observations suggest an asymmetric explosion, supporting the idea of two-component ejecta that influence the resulting late-time spectra and light curves. SN 2016gkg thus presents striking evidence for significant asymmetry in a standard-energy SN explosion. The presence of material at low velocity, which is not predicted in 1D simulations, emphasizes the importance of multidimensional explosion modeling of SNe.
  •  
5.
  • Kuncarayakti, Hanindyo, et al. (author)
  • SN 2017dio : A Type-Ic Supernova Exploding in a Hydrogen-rich Circumstellar Medium
  • 2018
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 854:1
  • Journal article (peer-reviewed)abstract
    • SN 2017dio shows both spectral characteristics of a type-Ic supernova (SN) and signs of a hydrogen-rich circumstellar medium (CSM). Prominent, narrow emission lines of H and He are superposed on the continuum. Subsequent evolution revealed that the SN ejecta are interacting with the CSM. The initial SN Ic identification was confirmed by removing the CSM interaction component from the spectrum and comparing with known SNe Ic and, reversely, adding a CSM interaction component to the spectra of known SNe Ic and comparing them to SN 2017dio. Excellent agreement was obtained with both procedures, reinforcing the SN Ic classification. The light curve constrains the pre-interaction SN Ic peak absolute magnitude to be around M-g = -17.6 mag. No evidence of significant extinction is found, ruling out a brighter luminosity required by an SN Ia classification. These pieces of evidence support the view that SN 2017dio is an SN Ic, and therefore the first firm case of an SN Ic with signatures of hydrogen-rich CSM in the early spectrum. The CSM is unlikely to have been shaped by steady-state stellar winds. The mass loss of the progenitor star must have been intense, M similar to 0.02 (epsilon(H alpha)/0.01)(-1) (nu(wind)/500 km s(-1)) (nu(shock)/10,000 km s(-1))M--3(circle dot) yr(-1), peaking at a few decades before the SN. Such a high mass-loss rate might have been experienced by the progenitor through eruptions or binary stripping.
  •  
6.
  • Nagao, Takashi, et al. (author)
  • Diversity of Dust Properties in External Galaxies Confirmed by Polarization Signals from Type II Supernovae
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 941:1
  • Journal article (peer-reviewed)abstract
    • Investigating interstellar (IS) dust properties in external galaxies is important not only to infer the intrinsic properties of astronomical objects but also to understand the star/planet formation in the galaxies. From the non–Milky Way–like extinction and interstellar polarization (ISP) observed in reddened Type Ia supernovae (SNe), it has been suggested that their host galaxies contain dust grains whose properties are substantially different from the Milky Way (MW) dust. It is important to investigate the universality of such non-MW-like dust in the universe. Here we report spectropolarimetry of two highly extinguished Type II SNe (SN 2022aau and SN 2022ame). SN 2022aau shows a polarization maximum at a shorter wavelength than MW stars, which is also observed in some Type Ia SNe. This is clear evidence for the existence of non-MW-like dust in its host galaxy (i.e., NGC 1672). This fact implies that such non-MW-like dust might be more common in some environments than expected, and thus it might affect the picture of the star/planet formation. On the other hand, SN 2022ame shows MW-like ISP, implying the presence of MW-like dust in its host galaxy (i.e., NGC 1255). Our findings confirm that dust properties of galaxies are diverse, either locally or globally. The present work demonstrates that further investigation of IS dust properties in external galaxies using polarimetry of highly reddened SNe is promising, providing a great opportunity to study the universality of such non-MW-like dust grains in the universe.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view