SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kutin Yury) "

Search: WFRF:(Kutin Yury)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chrysina, Maria, et al. (author)
  • Five-coordinate Mn-IV intermediate in the activation of nature's water splitting cofactor
  • 2019
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:34, s. 16841-16846
  • Journal article (peer-reviewed)abstract
    • Nature's water splitting cofactor passes through a series of catalytic intermediates (S-0-S-4) before O-O bond formation and O-2 release. In the second last transition (S-2 to S-3) cofactor oxidation is coupled to water molecule binding to Mn1. It is this activated, water-enriched all Mn-IV form of the cofactor that goes on to form the O-O bond, after the next light-induced oxidation to S-4. How cofactor activation proceeds remains an open question. Here, we report a so far not described intermediate (S-3') in which cofactor oxidation has occurred without water insertion. This intermediate can be trapped in a significant fraction of centers (> 50%) in (i) chemical-modified cofactors in which Ca2+ is exchanged with Sr2+; the Mn4O5Sr cofactor remains active, but the S-2-S-3 and S-3-S-0 transitions are slower than for the Mn4O5Ca cofactor; and (ii) upon addition of 3% vol/vol methanol; methanol is thought to act as a substrate water analog. The S-3' electron paramagnetic resonance (EPR) signal is significantly broader than the untreated S-3 signal (2.5 T vs. 1.5 T), indicating the cofactor still contains a 5-coordinate Mn ion, as seen in the preceding S-2 state. Magnetic double resonance data extend these findings revealing the electronic connectivity of the S-3' cofactor is similar to the high spin form of the preceding S-2 state, which contains a cuboidal Mn3O4Ca unit tethered to an external, 5-coordinate Mn ion (Mn-4). These results demonstrate that cofactor oxidation regulates water molecule insertion via binding to Mn-4. The interaction of ammonia with the cofactor is also discussed.
  •  
2.
  • Kutin, Yury, et al. (author)
  • Chemical flexibility of heterobimetallic Mn/Fe cofactors : R2lox and R2c proteins
  • 2019
  • In: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 294:48, s. 18372-18386
  • Journal article (peer-reviewed)abstract
    • A heterobimetallic Mn/Fe cofactor is present in the R2 subunit of class Ic ribonucleotide reductases (R2c) and in R2-like ligand-binding oxidases (R2lox). Although the protein-derived metal ligands are the same in both groups of proteins, the connectivity of the two metal ions and the chemistry each cofactor performs are different: in R2c, a one-electron oxidant, the Mn/Fe dimer is linked by two oxygen bridges (?-oxo/?-hydroxo), whereas in R2lox, a two-electron oxidant, it is linked by a single oxygen bridge (?-hydroxo) and a fatty acid ligand. Here, we identified a second coordination sphere residue that directs the divergent reactivity of the protein scaffold. We found that the residue that directly precedes the N-terminal carboxylate metal ligand is conserved as a glycine within the R2lox group but not in R2c. Substitution of the glycine with leucine converted the resting-state R2lox cofactor to an R2c-like cofactor, a ?-oxo/?-hydroxo?bridged Mn-III/Fe-III dimer. This species has recently been observed as an intermediate of the oxygen activation reaction in WT R2lox, indicating that it is physiologically relevant. Cofactor maturation in R2c and R2lox therefore follows the same pathway, with structural and functional divergence of the two cofactor forms following oxygen activation. We also show that the leucine-substituted variant no longer functions as a two-electron oxidant. Our results reveal that the residue preceding the N-terminal metal ligand directs the cofactor's reactivity toward one- or two-electron redox chemistry, presumably by setting the protonation state of the bridging oxygens and thereby perturbing the redox potential of the Mn ion.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view