SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kvarnström Jonas Dr) "

Sökning: WFRF:(Kvarnström Jonas Dr)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Warnquist, Håkan, 1982- (författare)
  • Computer-Assisted Troubleshooting for Efficient Off-board Diagnosis
  • 2011
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This licentiate thesis considers computer-assisted troubleshooting of complex products such as heavy trucks. The troubleshooting task is to find and repair all faulty components in a malfunctioning system. This is done by performing actions to gather more information regarding which faults there can be or to repair components that are suspected to be faulty. The expected cost of the performed actions should be as low as possible.The work described in this thesis contributes to solving the troubleshooting task in such a way that a good trade-off between computation time and solution quality can be made. A framework for troubleshooting is developed where the system is diagnosed using non-stationary dynamic Bayesian networks and the decisions of which actions to perform are made using a new planning algorithm for Stochastic Shortest Path Problems called Iterative Bounding LAO*.It is shown how the troubleshooting problem can be converted into a Stochastic Shortest Path problem so that it can be efficiently solved using general algorithms such as Iterative Bounding LAO*.  New and improved search heuristics for solving the troubleshooting problem by searching are also presented in this thesis.The methods presented in this thesis are evaluated in a case study of an auxiliary hydraulic braking system of a modern truck. The evaluation shows that the new algorithm Iterative Bounding LAO* creates troubleshooting plans with a lower expected cost faster than existing state-of-the-art algorithms in the literature. The case study shows that the troubleshooting framework can be applied to systems from the heavy vehicles domain.
  •  
2.
  • Lundell, Björn, et al. (författare)
  • Effective Strategies for Using Open Source Software and Open Standards in Organizational Contexts : Experiences From the Primary and Secondary Software Sectors
  • 2022
  • Ingår i: IEEE Software. - : IEEE. - 0740-7459 .- 1937-4194. ; 39:1, s. 84-92
  • Tidskriftsartikel (refereegranskat)abstract
    • Open source software (OSS) and open standards have become increasingly important for addressing challenges related to lock-in, interoperability and long-term maintenance of systems and associated digital assets. OSS projects operate under different conditions and many projects and organisations consider successful governance and strategic involvement with projects to constitute major challenges. Today, many companies seek to establish work practices which facilitate strategic engagement with OSS projects. Based on findings from collaborative research which draws from rich insights and extensive experiences from practice, the paper presents seven actionable strategies for organisations that seek to leverage long-term involvement with OSS projects. 
  •  
3.
  • Nilsson, Mikael, 1977- (författare)
  • Efficient Temporal Reasoning with Uncertainty
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Automated Planning is an active area within Artificial Intelligence. With the help of computers we can quickly find good plans in complicated problem domains, such as planning for search and rescue after a natural disaster. When planning in realistic domains the exact duration of an action generally cannot be predicted in advance. Temporal planning therefore tends to use upper bounds on durations, with the explicit or implicit assumption that if an action happens to be executed more quickly, the plan will still succeed. However, this assumption is often false. If we finish cooking too early, the dinner will be cold before everyone is at home and can eat. Simple Temporal Networks with Uncertainty (STNUs) allow us to model such situations. An STNU-based planner must verify that the temporal problems it generates are executable, which is captured by the property of dynamic controllability (DC). If a plan is not dynamically controllable, adding actions cannot restore controllability. Therefore a planner should verify after each action addition whether the plan remains DC, and if not, backtrack. Verifying dynamic controllability of a full STNU is computationally intensive. Therefore, incremental DC verification algorithms are needed.We start by discussing two existing algorithms relevant to the thesis. These are the very first DC verification algorithm called MMV (by Morris, Muscettola and Vidal) and the incremental DC verification algorithm called FastIDC, which is based on MMV.We then show that FastIDC is not sound, sometimes labeling networks as dynamically controllable when they are not.  We analyze the algorithm to pinpoint the cause and show how the algorithm can be modified to correctly and efficiently detect uncontrollable networks.In the next part we use insights from this work to re-analyze the MMV algorithm. This algorithm is pseudo-polynomial and was later subsumed by first an n5 algorithm and then an n4 algorithm. We show that the basic techniques used by MMV can in fact be used to create an n4 algorithm for verifying dynamic controllability, with a new termination criterion based on a deeper analysis of MMV. This means that there is now a comparatively easy way of implementing a highly efficient dynamic controllability verification algorithm. From a theoretical viewpoint, understanding MMV is important since it acts as a building block for all subsequent algorithms that verify dynamic controllability. In our analysis we also discuss a change in MMV which reduces the amount of regression needed in the network substantially.In the final part of the thesis we show that the FastIDC method can result in traversing part of a temporal network multiple times, with constraints slowly tightening towards their final values.  As a result of our analysis we then present a new algorithm with an improved traversal strategy that avoids this behavior.  The new algorithm, EfficientIDC, has a time complexity which is lower than that of FastIDC. We prove that it is sound and complete. 
  •  
4.
  • Warnquist, Håkan, 1982- (författare)
  • Troubleshooting Trucks : Automated Planning and Diagnosis
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis considers computer-assisted troubleshooting of heavy vehicles such as trucks and buses. In this setting, the person that is troubleshooting a vehicle problem is assisted by a computer that is capable of listing possible faults that can explain the problem and gives recommendations of which actions to take in order to solve the problem such that the expected cost of restoring the vehicle is low. To achieve this, such a system must be capable of solving two problems: the diagnosis problem of finding which the possible faults are and the decision problem of deciding which action should be taken.The diagnosis problem has been approached using Bayesian network models. Frameworks have been developed for the case when the vehicle is in the workshop only and for remote diagnosis when the vehicle is monitored during longer periods of time.The decision problem has been solved by creating planners that select actions such that the expected cost of repairing the vehicle is minimized. New methods, algorithms, and models have been developed for improving the performance of the planner.The theory developed has been evaluated on models of an auxiliary braking system, a fuel injection system, and an engine temperature control and monitoring system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy