SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Labrosse M.) "

Search: WFRF:(Labrosse M.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Zouganelis, I., et al. (author)
  • The Solar Orbiter Science Activity Plan : Translating solar and heliospheric physics questions into action
  • 2020
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 642
  • Journal article (peer-reviewed)abstract
    • Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission's science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit's science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter's SAP through a series of examples and the strategy being followed.
  •  
2.
  • Wedemeyer, S., et al. (author)
  • Solar Science with the Atacama Large Millimeter/Submillimeter Array-A New View of Our Sun
  • 2016
  • In: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 200:1-4, s. 1-73
  • Research review (peer-reviewed)abstract
    • The Atacama Large Millimeter/submillimeter Array (ALMA) is a new powerful tool for observing the Sun at high spatial, temporal, and spectral resolution. These capabilities can address a broad range of fundamental scientific questions in solar physics. The radiation observed by ALMA originates mostly from the chromosphere-a complex and dynamic region between the photosphere and corona, which plays a crucial role in the transport of energy and matter and, ultimately, the heating of the outer layers of the solar atmosphere. Based on first solar test observations, strategies for regular solar campaigns are currently being developed. State-of-the-art numerical simulations of the solar atmosphere and modeling of instrumental effects can help constrain and optimize future observing modes for ALMA. Here we present a short technical description of ALMA and an overview of past efforts and future possibilities for solar observations at submillimeter and millimeter wavelengths. In addition, selected numerical simulations and observations at other wavelengths demonstrate ALMA's scientific potential for studying the Sun for a large range of science cases.
  •  
3.
  • Wedemeyer, S., et al. (author)
  • SSALMON - The Solar Simulations for the Atacama Large Millimeter Observatory Network
  • 2015
  • In: Advances in Space Research. - : Elsevier BV. - 1879-1948 .- 0273-1177. ; 56:12, s. 2679-2692
  • Journal article (peer-reviewed)abstract
    • The Solar Simulations for the Atacama Large Millimeter Observatory Network (SSALMON) was initiated in 2014 in connection with two ALMA development studies. The Atacama Large Millimeter/submillimeter Array (ALMA) is a powerful new tool, which can also observe the Sun at high spatial, temporal, and spectral resolution. The international SSALMONetwork aims at co-ordinating the further development of solar observing modes for ALMA and at promoting scientific opportunities for solar physics with particular focus on numerical simulations, which can provide important constraints for the observing modes and can aid the interpretation of future observations. The radiation detected by ALMA originates mostly in the solar chromosphere - a complex and dynamic layer between the photosphere and corona, which plays an important role in the transport of energy and matter and the heating of the outer layers of the solar atmosphere. Potential targets include active regions, prominences, quiet Sun regions, flares. Here, we give a brief overview over the network and potential science cases for future solar observations with ALMA.
  •  
4.
  • Stefansson, Gunnar, 1963, et al. (author)
  • Processes and operations cases
  • 2011
  • In: Sustainable Supply Chain Management: Practical Ideas for Moving Towards Best Practice. - Berlin, Heidelberg : Springer Berlin Heidelberg. - 9783642120220 ; , s. 213-258
  • Book chapter (other academic/artistic)abstract
    • In order to lower logistics costs and increase efficiency in its transportation and warehousing operations, IKEA started an internal competition to reduce unnecessary air in their product packaging. This Air hunting competition focused on removing as much air as possible from packaging and thereby increasing true product volume during transportation and storage. Several IKEA products were identified for packaging development, one being the Glimma tea candle that is described in this best practice documentation. The development of the Glimma tea candle packaging resulted in a 30% increase in products volume for each load unit. Thanks to this packaging development, the efficiency of the transportation and warehouse operations is now much greater and the impact on the environment has decreased significantly.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view