SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lamarca Arrizabalaga Antton) "

Sökning: WFRF:(Lamarca Arrizabalaga Antton)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmed, Rafsan, et al. (författare)
  • EasyNER: A Customizable Easy-to-Use Pipeline for Deep Learning- and Dictionary-based Named Entity Recognition from Medical Text
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Medical research generates a large number of publications with the PubMed database already containing >35 million research articles. Integration of the knowledge scattered across this large body of literature could provide key insights into physiological mechanisms and disease processes leading to novel medical interventions. However, it is a great challenge for researchers to utilize this information in full since the scale and complexity of the data greatly surpasses human processing abilities. This becomes especially problematic in cases of extreme urgency like the COVID-19 pandemic. Automated text mining can help extract and connect information from the large body of medical research articles. The first step in text mining is typically the identification of specific classes of keywords (e.g., all protein or disease names), so called Named Entity Recognition (NER). Here we present an end-to-end pipeline for NER of typical entities found in medical research articles, including diseases, cells, chemicals, genes/proteins, and species. The pipeline can access and process large medical research article collections (PubMed, CORD-19) or raw text and incorporates a series of deep learning models fine-tuned on the HUNER corpora collection. In addition, the pipeline can perform dictionary-based NER related to COVID-19 and other medical topics. Users can also load their own NER models and dictionaries to include additional entities. The output consists of publication-ready ranked lists and graphs of detected entities and files containing the annotated texts. An associated script allows rapid inspection of the results for specific entities of interest. As model use cases, the pipeline was deployed on two collections of autophagy-related abstracts from PubMed and on the CORD19 dataset, a collection of 764 398 research article abstracts related to COVID-19.
  •  
2.
  • Ekdahl, Ludvig, et al. (författare)
  • AliGater : a framework for the development of bioinformatic pipelines for large-scale, high-dimensional cytometry data
  • 2023
  • Ingår i: Bioinformatics Advances. - 2635-0041. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: AliGater is an open-source framework to accelerate the development of bioinformatic pipelines for the analysis of large-scale, high-dimensional flow cytometry data. AliGater provides a Python package for automatic feature extraction workflows, as well as building blocks to construct analysis pipelines. Results: We illustrate the use of AliGater in a high-resolution flow cytometry-based genome-wide association study on 46 immune cell populations in 14 288 individuals.
  •  
3.
  • Lopez de Lapuente Portilla, Aitzkoa, et al. (författare)
  • Genome-wide association study on 13 167 individuals identifies regulators of blood CD34+cell levels
  • 2022
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 139:11, s. 1659-1669
  • Tidskriftsartikel (refereegranskat)abstract
    • Stem cell transplantation is a cornerstone in the treatment of blood malignancies. The most common method to harvest stem cells for transplantation is by leukapheresis, requiring mobilization of CD34+ hematopoietic stem and progenitor cells (HSPCs) from the bone marrow into the blood. Identifying the genetic factors that control blood CD34+ cell levels could reveal new drug targets for HSPC mobilization. Here we report the first large-scale, genome-wide association study on blood CD34+ cell levels. Across 13 167 individuals, we identify 9 significant and 2 suggestive associations, accounted for by 8 loci (PPM1H, CXCR4, ENO1-RERE, ITGA9, ARHGAP45, CEBPA, TERT, and MYC). Notably, 4 of the identified associations map to CXCR4, showing that bona fide regulators of blood CD34+ cell levels can be identified through genetic variation. Further, the most significant association maps to PPM1H, encoding a serine/threonine phosphatase never previously implicated in HSPC biology. PPM1H is expressed in HSPCs, and the allele that confers higher blood CD34+ cell levels downregulates PPM1H. Through functional fine-mapping, we find that this downregulation is caused by the variant rs772557-A, which abrogates an MYB transcription factor–binding site in PPM1H intron 1 that is active in specific HSPC subpopulations, including hematopoietic stem cells, and interacts with the promoter by chromatin looping. Furthermore, PPM1H knockdown increases the proportion of CD34+ and CD34+90+ cells in cord blood assays. Our results provide the first large-scale analysis of the genetic architecture of blood CD34+ cell levels and warrant further investigation of PPM1H as a potential inhibition target for stem cell mobilization.
  •  
4.
  • Lopez de Lapuente Portilla, Aitzkoa, et al. (författare)
  • Genome-wide association study on 13,167 individuals identifies regulators of hematopoietic stem and progenitor cell levels in human blood
  • 2021
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Understanding how hematopoietic stem and progenitor cells (HSPCs) are regulated is of central importance for the development of new therapies for blood disorders and stem cell transplantation. To date, HSPC regulation has been extensively studied in vitro and in animal models, but less is known about the mechanisms in vivo in humans. Here, in a genome-wide association study on 13,167 individuals, we identify 9 significant and 2 suggestive DNA sequence variants that influence HSPC (CD34+) levels in human blood. The identified loci associate with blood disorders, harbor known and novel HSPC genes, and affect gene expression in HSPCs. Interestingly, our strongest association maps to the PPM1H gene, encoding an evolutionarily conserved serine/threonine phosphatase never previously implicated in stem cell biology. PPM1H is expressed in HSPCs, and the allele that confers higher blood CD34+ cell levels downregulates PPM1H. By functional fine-mapping, we find that this downregulation is caused by the variant rs772557-A, which abrogates a MYB transcription factor binding site in PPM1H intron 1 that is active in specific HSPC subpopulations, including hematopoietic stem cells, and interacts with the promoter by chromatin looping. Furthermore, rs772557-A selectively increases HSPC subpopulations in which the MYB site is active, and PPM1H shRNA- knockdown increased CD34+ and CD34+90+ cell proportions in umbilical cord blood cultures. Our findings represent the first large-scale association study on a stem cell trait, illuminating HSPC regulation in vivo in humans, and identifying PPM1H as a novel inhibition target that can potentially be utilized clinically to facilitate stem cell harvesting for transplantation.
  •  
5.
  • Went, Molly, et al. (författare)
  • Deciphering the genetics and mechanisms of predisposition to multiple myeloma
  • 2024
  • Ingår i: Nature Communications. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple myeloma (MM) is an incurable malignancy of plasma cells. Epidemiological studies indicate a substantial heritable component, but the underlying mechanisms remain unclear. Here, in a genome-wide association study totaling 10,906 cases and 366,221 controls, we identify 35 MM risk loci, 12 of which are novel. Through functional fine-mapping and Mendelian randomization, we uncover two causal mechanisms for inherited MM risk: longer telomeres; and elevated levels of B-cell maturation antigen (BCMA) and interleukin-5 receptor alpha (IL5RA) in plasma. The largest increase in BCMA and IL5RA levels is mediated by the risk variant rs34562254-A at TNFRSF13B. While individuals with loss-of-function variants in TNFRSF13B develop B-cell immunodeficiency, rs34562254-A exerts a gain-of-function effect, increasing MM risk through amplified B-cell responses. Our results represent an analysis of genetic MM predisposition, highlighting causal mechanisms contributing to MM development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy