SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lampert Eliane) "

Search: WFRF:(Lampert Eliane)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dufour, Stéphane P, et al. (author)
  • Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity.
  • 2006
  • In: Journal of applied physiology. - Betsheda, USA : American Physiological Society. - 8750-7587 .- 1522-1601. ; 100:4, s. 1238-48
  • Journal article (peer-reviewed)abstract
    • This study investigates whether a 6-wk intermittent hypoxia training (IHT), designed to avoid reductions in training loads and intensities, improves the endurance performance capacity of competitive distance runners. Eighteen athletes were randomly assigned to train in normoxia [Nor group; n = 9; maximal oxygen uptake (VO2 max) = 61.5 +/- 1.1 ml x kg(-1) x min(-1)] or intermittently in hypoxia (Hyp group; n = 9; VO2 max = 64.2 +/- 1.2 ml x kg(-1) x min(-1)). Into their usual normoxic training schedule, athletes included two weekly high-intensity (second ventilatory threshold) and moderate-duration (24-40 min) training sessions, performed either in normoxia [inspired O2 fraction (FiO2) = 20.9%] or in normobaric hypoxia (FiO2) = 14.5%). Before and after training, all athletes realized 1) a normoxic and hypoxic incremental test to determine VO2 max and ventilatory thresholds (first and second ventilatory threshold), and 2) an all-out test at the pretraining minimal velocity eliciting VO2 max to determine their time to exhaustion (T(lim)) and the parameters of O2 uptake (VO2) kinetics. Only the Hyp group significantly improved VO2 max (+5% at both FiO2, P < 0.05), without changes in blood O2-carrying capacity. Moreover, T(lim) lengthened in the Hyp group only (+35%, P < 0.001), without significant modifications of VO2 kinetics. Despite similar training load, the Nor group displayed no such improvements, with unchanged VO2 max (+1%, nonsignificant), T(lim) (+10%, nonsignificant), and VO2 kinetics. In addition, T(lim) improvements in the Hyp group were not correlated with concomitant modifications of other parameters, including VO2 max or VO2 kinetics. The present IHT model, involving specific high-intensity and moderate-duration hypoxic sessions, may potentialize the metabolic stimuli of training in already trained athletes and elicit peripheral muscle adaptations, resulting in increased endurance performance capacity.
  •  
2.
  • Echaniz-Laguna, Andoni, et al. (author)
  • Muscular mitochondrial function in amyotrophic lateral sclerosis is progressively altered as the disease develops : A temporal study in man
  • 2006
  • In: Experimental Neurology. - San Diego, USA : Elsevier. - 0014-4886 .- 1090-2430. ; 198:1, s. 25-30
  • Journal article (peer-reviewed)abstract
    • We performed repeated analysis of mitochondrial respiratory function in skeletal muscle (SM) of patients with early-stage sporadic amyotrophic lateral sclerosis (SALS) to determine whether mitochondrial function was altered as the disease advanced. SM biopsies were obtained from 7 patients with newly diagnosed SALS, the same 7 patients 3 months later, and 7 sedentary controls. Muscle fibers were permeabilized with saponin, then skinned and placed in an oxygraphic chamber to measure basal and maximal adenosine diphosphate (ADP)-stimulated respiration rates and to assess mitochondrial regulation by ADP. We found that the maximal oxidative phosphorylation capacity of muscular mitochondria significantly increased, and muscular mitochondrial respiratory complex IV activity significantly decreased as the disease advanced. This temporal study demonstrates for the first time that mitochondrial function in SM in human SALS is progressively altered as the disease develops.
  •  
3.
  • N'Guessan, Benoit, et al. (author)
  • Evaluation of quantitative and qualitative aspects of mitochondrial function in human skeletal and cardiac muscles
  • 2004
  • In: Molecular and Cellular Biochemistry. - Dordrecht, Netherlands : Kluwer Academic Publishers. - 0300-8177 .- 1573-4919. ; 256-257:1-2, s. 267-80
  • Research review (peer-reviewed)abstract
    • Techniques and protocols of assessment of mitochondrial properties are of physiological and physiopathological important significance. A precise knowledge of the advantages and limitations of the different protocols used to investigate the mitochondrial function, is therefore necessary. This report presents examples of how the skinned (or permeabilized) fibers technique could be applied for the polarographic determination of the actual quantitative and qualitative aspects of mitochondrial function in human muscle samples. We described and compared the main available respiration protocols in order to sort out which protocol seems more appropriate for the characterization of mitochondrial properties according to the questions under consideration: quantitative determination of oxidative capacities of a given muscle, characterization of the pattern of control of mitochondrial respiration, or assessment of a mitochondrial defect at the level of the respiratory chain complexes. We showed that while protocol A, using only two levels of the phosphate acceptor adenosine diphosphate (ADP) concentration and the adjunction of creatine, could be used for the determination of quantitative changes in very small amount of muscle samples, the ADP sensitivity of mitochondrial respiration was underestimated by this protocol in muscles with high oxidative capacities. The actual apparent Km for ADP and the role of functional activation of miCK in ATP production and energy transfer in oxidative muscles, are well-assessed by protocol B (in the absence of creatine) together with protocol C (in the presence of creatine) that use increasing concentrations of ADP ranging from 2.5-2000 microM. Protocol D is well-adapted to investigate the potential changes at different levels of the respiratory chain, by the use of specific substrates and inhibitors. As can be seen from the present data and the current review of previous reports in the literature, a standardization of the respiration protocols is needed for useful comparisons between studies.
  •  
4.
  • Ponsot, Elodie, 1973-, et al. (author)
  • Exercise training in normobaric hypoxia in endurance runners. II. Improvement of mitochondrial properties in skeletal muscle
  • 2006
  • In: Journal of applied physiology. - Betsheda, USA : American Physiological Society. - 8750-7587 .- 1522-1601. ; 100:4, s. 1249-57
  • Journal article (peer-reviewed)abstract
    • This study investigates whether adaptations of mitochondrial function accompany the improvement of endurance performance capacity observed in well-trained athletes after an intermittent hypoxic training program. Fifteen endurance-trained athletes performed two weekly training sessions on treadmill at the velocity associated with the second ventilatory threshold (VT2) with inspired O2 fraction = 14.5% [hypoxic group (Hyp), n = 8] or with inspired O2 fraction = 21% [normoxic group (Nor), n = 7], integrated into their usual training, for 6 wk. Before and after training, oxygen uptake (VO2) and speed at VT2, maximal VO2 (VO2 max), and time to exhaustion at velocity of VO2 max (minimal speed associated with VO2 max) were measured, and muscle biopsies of vastus lateralis were harvested. Muscle oxidative capacities and sensitivity of mitochondrial respiration to ADP (Km) were evaluated on permeabilized muscle fibers. Time to exhaustion, VO2 at VT2, and VO2 max were significantly improved in Hyp (+42, +8, and +5%, respectively) but not in Nor. No increase in muscle oxidative capacity was obtained with either training protocol. However, mitochondrial regulation shifted to a more oxidative profile in Hyp only as shown by the increased Km for ADP (Nor: before 476 +/- 63, after 524 +/- 62 microM, not significant; Hyp: before 441 +/- 59, after 694 +/- 51 microM, P < 0.05). Thus including hypoxia sessions into the usual training of athletes qualitatively ameliorates mitochondrial function by increasing the respiratory control by creatine, providing a tighter integration between ATP demand and supply.
  •  
5.
  • Ponsot, Elodie, 1973-, et al. (author)
  • Impairment of maximal aerobic power with moderate hypoxia in endurance athletes : do skeletal muscle mitochondria play a role?
  • 2010
  • In: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 298:3, s. R558-R566
  • Journal article (peer-reviewed)abstract
    • This study investigates the role of central vs. peripheral factors in the limitation of maximal oxygen uptake ((V) over dot O-2max) with moderate hypoxia [inspired fraction (FIO2) = 14.5%]. Fifteen endurance-trained athletes performed maximal cycle incremental tests to assess (V) over dotO(2max), maximal cardiac output ((Q) over dot(max)), and maximal arteriovenous oxygen (a-vO(2)) difference in normoxia and hypoxia. Muscle biopsies of vastus lateralis were taken 1 wk before the cycling tests to evaluate maximal muscle oxidative capacity ((V) over dot(max)) and sensitivity of mitochondrial respiration to ADP (K-m) on permeabilized muscle fibers in situ. Those athletes exhibiting the largest reduction of (V) over dotO(2max) in moderate hypoxia (Severe Loss group: -18 +/- 2%) suffered from significant reductions in Q(max) (-4 +/- 1%) and maximal a-vO(2) difference (-14 +/- 2%). Athletes who well tolerated hypoxia, as attested by a significantly smaller drop of (V) over dotO(2max) with hypoxia (Moderate Loss group: -7 +/- 1%), also display a blunted (Q) over dot(max) (-9 +/- 2%) but, conversely, were able to maintain maximal a-vO(2) difference (+1 +/- 2%). Though (V) over dot(max) was similar in the two experimental groups, the smallest reduction of (V) over dotO(2max) with moderate hypoxia was observed in those athletes presenting the lowest apparent Km for ADP in the presence of creatine (K-m (+) (Cr)). In already-trained athletes with high muscular oxidative capacities, the qualitative, rather than quantitative, aspects of the mitochondrial function may constitute a limiting factor to aerobic ATP turnover when exercising at low FIO2, presumably through the functional coupling between the mitochondrial creatine kinase and ATP production. This study suggests a potential role for peripheral factors, including the alteration of cellular homeostasis in active muscles, in determining the tolerance to hypoxia in maximally exercising endurance-trained athletes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view