SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Langhorne Jean) "

Search: WFRF:(Langhorne Jean)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Boraschi, Diana, et al. (author)
  • Immunity against HIV/AIDS, malaria, and tuberculosis during co-infections with neglected infectious diseases: recommendations for the European Union research priorities.
  • 2008
  • In: PLoS neglected tropical diseases. - : Public Library of Science (PLoS). - 1935-2735. ; 2:6
  • Journal article (peer-reviewed)abstract
    • Infectious diseases remain a major health and socioeconomic problem in many low-income countries, particularly in sub-Saharan Africa. For many years, the three most devastating diseases, HIV/AIDS, malaria, and tuberculosis (TB) have received most of the world's attention. However, in rural and impoverished urban areas, a number of infectious diseases remain neglected and cause massive suffering. It has been calculated that a group of 13 neglected infectious diseases affects over one billion people, corresponding to a sixth of the world's population. These diseases include infections with different types of worms and parasites, cholera, and sleeping sickness, and can cause significant mortality and severe disabilities in low-income countries. For most of these diseases, vaccines are either not available, poorly effective, or too expensive. Moreover, these neglected diseases often occur in individuals who are also affected by HIV/AIDS, malaria, or TB, making the problem even more serious and indicating that co-infections are the rule rather than the exception in many geographical areas. To address the importance of combating co-infections, scientists from 14 different countries in Africa and Europe met in Addis Ababa, Ethiopia, on September 9-11, 2007. The message coming from these scientists is that the only possibility for winning the fight against infections in low-income countries is by studying, in the most global way possible, the complex interaction between different infections and conditions of malnourishment. The new scientific and technical tools of the post-genomic era can allow us to reach this goal. However, a concomitant effort in improving education and social conditions will be needed to make the scientific findings effective.
  •  
2.
  • Brugat, Thibaut, et al. (author)
  • Antibody-independent mechanisms regulate the establishment of chronic Plasmodium infection
  • 2017
  • In: Nature Microbiology. - : Macmillan Publishers Ltd.. - 2058-5276. ; 2:4
  • Journal article (peer-reviewed)abstract
    • Malaria is caused by parasites of the genus Plasmodium. All human-infecting Plasmodium species can establish long-lasting chronic infections(1-5), creating an infectious reservoir to sustain transmission(1,6). It is widely accepted that the maintenance of chronic infection involves evasion of adaptive immunity by antigenic variation(7). However, genes involved in this process have been identified in only two of five human-infecting species: Plasmodium falciparum and Plasmodium knowlesi. Furthermore, little is understood about the early events in the establishment of chronic infection in these species. Using a rodent model we demonstrate that from the infecting population, only a minority of parasites, expressing one of several clusters of virulence-associated pir genes, establishes a chronic infection. This process occurs in different species of parasites and in different hosts. Establishment of chronicity is independent of adaptive immunity and therefore different from the mechanism proposed for maintenance of chronic P. falciparum infections(7-9). Furthermore, we show that the proportions of parasites expressing different types of pir genes regulate the time taken to establish a chronic infection. Because pir genes are common to most, if not all, species of Plasmodium(10), this process may be a common way of regulating the establishment of chronic infections.
  •  
3.
  • Israelsson, Elisabeth, 1979- (author)
  • Host genetic factors and antibody responses with potential involvement in the susceptibility to malaria
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • The relatively lower susceptibility to malaria seen in the Fulani ethnic group in Africa, as compared to other sympatric ethnic groups, has been related to genetic regulation of the immune responses. This thesis aimed to describe important pathways related to the regulation of antibodies in the immune responses during a malaria infection. Our results suggest that the higher anti-malarial immune responses seen in the Fulani are not a general hyper-responsiveness in this group, but neither a malaria specific response. Fcγ receptors are important structures in the immune responses, and polymorphisms in these genes were associated with IgG subclass levels, P. falciparum parasitemia and haemoglobin levels, suggesting that these polymorphisms may be a contributing factor to the differential susceptibility to malaria. C-reactive protein levels rise immediately in response to inflammatory stimuli, and the -286 CRP polymorphism was indicated to influence parasite levels, suggesting a possible involvement in the lower susceptibility to malaria seen in the Fulani ethnic group. Several cytokines are important in maintaining the optimal parasite-neutralizing milieu in the host, and we investigated polymorphisms in some of these cytokine genes, in order to establish a possible influence of these on malaria susceptibility. Several of these polymorphisms showed associations with haemoglobin levels, IgG subclass antibody levels and parasitemia, suggesting that IL-1β, IL-6, IL-10 and TNF could affect the susceptibility to malaria and the severity of the malaria infection.Taken together, these data suggest that genetic factors have the ability to affect the antibody responses, and that several pathways can be affected. Moreover, the Fulani have a genetic predisposition for a higher inflammatory response during a malaria infection, which could lower their susceptibility to the disease. However, the control measures for this inflammation still have to be established and evaluated.
  •  
4.
  • Marr, Edward J, et al. (author)
  • An enhanced toolkit for the generation of knockout and marker-free fluorescent Plasmodium chabaudi
  • 2020
  • In: Wellcome open research. - : Wellcome open research. - 2398-502X. ; 5
  • Journal article (peer-reviewed)abstract
    • The rodent parasite Plasmodium chabaudi is an important in vivo model of malaria. The ability to produce chronic infections makes it particularly useful for investigating the development of anti- Plasmodium immunity, as well as features associated with parasite virulence during both the acute and chronic phases of infection. P. chabaudi also undergoes asexual maturation (schizogony) and erythrocyte invasion in culture, so offers an experimentally-amenable in vivo to in vitro model for studying gene function and drug activity during parasite replication. To extend the usefulness of this model, we have further optimised transfection protocols and plasmids for P. chabaudi and generated stable, fluorescent lines that are free from drug-selectable marker genes. These mother-lines show the same infection dynamics as wild-type parasites throughout the lifecycle in mice and mosquitoes; furthermore, their virulence can be increased by serial blood passage and reset by mosquito transmission. We have also adapted the large-insert, linear PlasmoGEM vectors that have revolutionised the scale of experimental genetics in another rodent malaria parasite and used these to generate barcoded P. chabaudi gene-deletion and -tagging vectors for transfection in our fluorescent P. chabaudi mother-lines. This produces a tool-kit of P. chabaudi lines, vectors and transfection approaches that will be of broad utility to the research community.
  •  
5.
  • Okafor, Christian M. F., et al. (author)
  • Cellular responses to modified Plasmodium falciparum MSP1(19) antigens in individuals previously exposed to natural malaria infection
  • 2009
  • In: Malaria Journal. - : Springer Science and Business Media LLC. - 1475-2875. ; 8, s. 263-
  • Journal article (peer-reviewed)abstract
    • Background: MSP1 processing-inhibitory antibodies bind to epitopes on the 19 kDa C-terminal region of the Plasmodium falciparum merozoite surface protein 1 (MSP1(19)), inhibiting erythrocyte invasion. Blocking antibodies also bind to this antigen but prevent inhibitory antibodies binding, allowing invasion to proceed. Recombinant MSP1(19) had been modified previously to allow inhibitory but not blocking antibodies to continue to bind. Immunization with these modified proteins, therefore, has the potential to induce more effective protective antibodies. However, it was unclear whether the modification of MSP1(19) would affect critical T-cell responses to epitopes in this antigen. Methods: The cellular responses to wild-type MSP1(19) and a panel of modified MSP1(19) antigens were measured using an in-vitro assay for two groups of individuals: the first were malaria-nave and the second had been naturally exposed to Plasmodium falciparum infection. The cellular responses to the modified proteins were examined using cells from malaria-exposed infants and adults. Results: Interestingly, stimulation indices (SI) for responses induced by some of the modified proteins were at least two-fold higher than those elicited by the wild-type MSP1(19). A protein with four amino acid substitutions (Glu27 -> Tyr, Leu31 -> Arg, Tyr34 -> Ser and Glu43 -> Leu) had the highest stimulation index (SI up to 360) and induced large responses in 64% of the samples that had significant cellular responses to the modified proteins. Conclusion: This study suggests that specific MSP1(19) variants that have been engineered to improve their antigenicity for inhibitory antibodies, retain T-cell epitopes and the ability to induce cellular responses. These proteins are candidates for the development of MSP1-based malaria vaccines.
  •  
6.
  • Otto, Thomas D., et al. (author)
  • A comprehensive evaluation of rodent malaria parasite genomes and gene expression
  • 2014
  • In: BMC Biology. - : BioMed Central. - 1741-7007. ; 12
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Rodent malaria parasites (RMP) are used extensively as models of human malaria. Draft RMP genomes have been published for Plasmodium yoelii, P. berghei ANKA (PbA) and P. chabaudi AS (PcAS). Although availability of these genomes made a significant impact on recent malaria research, these genomes were highly fragmented and were annotated with little manual curation. The fragmented nature of the genomes has hampered genome wide analysis of Plasmodium gene regulation and function.RESULTS: We have greatly improved the genome assemblies of PbA and PcAS, newly sequenced the virulent parasite P. yoelii YM genome, sequenced additional RMP isolates/lines and have characterized genotypic diversity within RMP species. We have produced RNA-seq data and utilised it to improve gene-model prediction and to provide quantitative, genome-wide, data on gene expression. Comparison of the RMP genomes with the genome of the human malaria parasite P. falciparum and RNA-seq mapping permitted gene annotation at base-pair resolution. Full-length chromosomal annotation permitted a comprehensive classification of all subtelomeric multigene families including the 'Plasmodium interspersed repeat genes' (pir). Phylogenetic classification of the pir family, combined with pir expression patterns, indicates functional diversification within this family.CONCLUSIONS: Complete RMP genomes, RNA-seq and genotypic diversity data are excellent and important resources for gene-function and post-genomic analyses and to better interrogate Plasmodium biology. Genotypic diversity between P. chabaudi isolates makes this species an excellent parasite to study genotype-phenotype relationships. The improved classification of multigene families will enhance studies on the role of (variant) exported proteins in virulence and immune evasion/modulation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view