SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Langley Kirsty) "

Search: WFRF:(Langley Kirsty)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kropp, Heather, et al. (author)
  • Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems
  • 2021
  • In: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 16:1
  • Journal article (peer-reviewed)abstract
    • Soils are warming as air temperatures rise across the Arctic and Boreal region concurrent with the expansion of tall-statured shrubs and trees in the tundra. Changes in vegetation structure and function are expected to alter soil thermal regimes, thereby modifying climate feedbacks related to permafrost thaw and carbon cycling. However, current understanding of vegetation impacts on soil temperature is limited to local or regional scales and lacks the generality necessary to predict soil warming and permafrost stability on a pan-Arctic scale. Here we synthesize shallow soil and air temperature observations with broad spatial and temporal coverage collected across 106 sites representing nine different vegetation types in the permafrost region. We showed ecosystems with tall-statured shrubs and trees (>40 cm) have warmer shallow soils than those with short-statured tundra vegetation when normalized to a constant air temperature. In tree and tall shrub vegetation types, cooler temperatures in the warm season do not lead to cooler mean annual soil temperature indicating that ground thermal regimes in the cold-season rather than the warm-season are most critical for predicting soil warming in ecosystems underlain by permafrost. Our results suggest that the expansion of tall shrubs and trees into tundra regions can amplify shallow soil warming, and could increase the potential for increased seasonal thaw depth and increase soil carbon cycling rates and lead to increased carbon dioxide loss and further permafrost thaw.
  •  
2.
  • Lindbäck, Katrin, et al. (author)
  • Subglacial topography, ice thickness, and bathymetry of Kongsfjorden, northwestern Svalbard
  • 2018
  • In: Earth System Science Data. - : COPERNICUS GESELLSCHAFT MBH. - 1866-3508 .- 1866-3516. ; 10:4, s. 1769-1781
  • Journal article (peer-reviewed)abstract
    • Svalbard tidewater glaciers are retreating, which will affect fjord circulation and ecosystems when glacier fronts become land-terminating. Knowledge of the subglacial topography and bathymetry under retreating glaciers is important to modelling future scenarios of fjord circulation and glacier dynamics. We present high-resolution (150m gridded) digital elevation models of subglacial topography, ice thickness, and ice surface elevation of five tidewater glaciers in Kongsfjorden (1100 km(2)), northwestern Spitsbergen, based on similar to 1700 km airborne and ground-based ice-penetrating radar profiles. The digital elevation models (DEMs) cover the tidewater glaciers Blomstrandbreen, Conwaybreen, Kongsbreen, Kronebreen, and Kongsvegen and are merged with bathymetric and land DEMs for the non-glaciated areas. The large-scale subglacial topography of the study area is characterized by a series of troughs and highs. The minimum subglacial elevation is 180m above sea level (a.s.l.), the maximum subglacial elevation is 1400m a.s.l., and the maximum ice thickness is 740m. Three of the glaciers, Kongsbreen, Kronebreen, and Kongsvegen, have the potential to retreat by similar to 10 km before they become land-terminating. The compiled data set covers one of the most studied regions in Svalbard and is valuable for future studies of glacier dynamics, geology, hydrology, and fjord circulation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view