SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lannuzel D.) "

Sökning: WFRF:(Lannuzel D.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fripiat, F., et al. (författare)
  • Macro-nutrient concentrations in Antarctic pack ice: Overall patterns and overlooked processes
  • 2017
  • Ingår i: Elementa. - : University of California Press. - 2325-1026. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Antarctic pack ice is inhabited by a diverse and active microbial community reliant on nutrients for growth. Seeking patterns and overlooked processes, we performed a large-scale compilation of macro-nutrient data (hereafter termed nutrients) in Antarctic pack ice (306 ice-cores collected from 19 research cruises). Dissolved inorganic nitrogen and silicic acid concentrations change with time, as expected from a seasonally productive ecosystem. In winter, salinity-normalized nitrate and silicic acid concentrations (C∗) in sea ice are close to seawater concentrations (Cw), indicating little or no biological activity. In spring, nitrate and silicic acid concentrations become partially depleted with respect to seawater (C∗ < Cw), commensurate with the seasonal build-up of ice microalgae promoted by increased insolation. Stronger and earlier nitrate than silicic acid consumption suggests that a significant fraction of the primary productivity in sea ice is sustained by flagellates. By both consuming and producing ammonium and nitrite, the microbial community maintains these nutrients at relatively low concentrations in spring. With the decrease in insolation beginning in late summer, dissolved inorganic nitrogen and silicic acid concentrations increase, indicating imbalance between their production (increasing or unchanged) and consumption (decreasing) in sea ice. Unlike the depleted concentrations of both nitrate and silicic acid from spring to summer, phosphate accumulates in sea ice (C∗ > Cw). The phosphate excess could be explained by a greater allocation to phosphorus-rich biomolecules during ice algal blooms coupled with convective loss of excess dissolved nitrogen, preferential remineralization of phosphorus, and/or phosphate adsorption onto metal-organic complexes. Ammonium also appears to be efficiently adsorbed onto organic matter, with likely consequences to nitrogen mobility and availability. This dataset supports the view that the sea ice microbial community is highly efficient at processing nutrients but with a dynamic quite different from that in oceanic surface waters calling for focused future investigations. Copyright © 2017 The Author(s).
  •  
2.
  • Willis, Megan D., et al. (författare)
  • Polar oceans and sea ice in a changing climate
  • 2023
  • Ingår i: Elementa. - 2325-1026. ; 11:1
  • Forskningsöversikt (refereegranskat)abstract
    • Polar oceans and sea ice cover 15% of the Earth's ocean surface, and the environment is changing rapidly at both poles. Improving knowledge on the interactions between the atmospheric and oceanic realms in the polar regions, a Surface Ocean-Lower Atmosphere Study (SOLAS) project key focus, is essential to understanding the Earth system in the context of climate change. However, our ability to monitor the pace and magnitude of changes in the polar regions and evaluate their impacts for the rest of the globe is limited by both remoteness and sea-ice coverage. Sea ice not only supports biological activity and mediates gas and aerosol exchange but can also hinder some in-situ and remote sensing observations. While satellite remote sensing provides the baseline climate record for sea-ice properties and extent, these techniques cannot provide key variables within and below sea ice. Recent robotics, modeling, and in-situ measurement advances have opened new possibilities for understanding the ocean-sea ice-atmosphere system, but critical knowledge gaps remain. Seasonal and long-term observations are clearly lacking across all variables and phases. Observational and modeling efforts across the sea-ice, ocean, and atmospheric domains must be better linked to achieve a system-level understanding of polar ocean and sea-ice environments. As polar oceans are warming and sea ice is becoming thinner and more ephemeral than before, dramatic changes over a suite of physicochemical and biogeochemical processes are expected, if not already underway. These changes in sea-ice and ocean conditions will affect atmospheric processes by modifying the production of aerosols, aerosol precursors, reactive halogens and oxidants, and the exchange of greenhouse gases. Quantifying which processes will be enhanced or reduced by climate change calls for tailored monitoring programs for high-latitude ocean environments. Open questions in this coupled system will be best resolved by leveraging ongoing international and multidisciplinary programs, such as efforts led by SOLAS, to link research across the ocean-sea ice-atmosphere interface.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy