SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lebret E) "

Search: WFRF:(Lebret E)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Drakvik, E., et al. (author)
  • Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment
  • 2020
  • In: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 134
  • Journal article (peer-reviewed)abstract
    • The number of anthropogenic chemicals, manufactured, by-products, metabolites and abiotically formed transformation products, counts to hundreds of thousands, at present. Thus, humans and wildlife are exposed to complex mixtures, never one chemical at a time and rarely with only one dominating effect. Hence there is an urgent need to develop strategies on how exposure to multiple hazardous chemicals and the combination of their effects can be assessed. A workshop, “Advancing the Assessment of Chemical Mixtures and their Risks for Human Health and the Environment” was organized in May 2018 together with Joint Research Center in Ispra, EU-funded research projects and Commission Services and relevant EU agencies. This forum for researchers and policy-makers was created to discuss and identify gaps in risk assessment and governance of chemical mixtures as well as to discuss state of the art science and future research needs. Based on the presentations and discussions at this workshop we want to bring forward the following Key Messages: • We are at a turning point: multiple exposures and their combined effects require better management to protect public health and the environment from hazardous chemical mixtures. • Regulatory initiatives should be launched to investigate the opportunities for all relevant regulatory frameworks to include prospective mixture risk assessment and consider combined exposures to (real-life) chemical mixtures to humans and wildlife, across sectors. • Precautionary approaches and intermediate measures (e.g. Mixture Assessment Factor) can already be applied, although, definitive mixture risk assessments cannot be routinely conducted due to significant knowledge and data gaps. • A European strategy needs to be set, through stakeholder engagement, for the governance of combined exposure to multiple chemicals and mixtures. The strategy would include research aimed at scientific advancement in mechanistic understanding and modelling techniques, as well as research to address regulatory and policy needs. Without such a clear strategy, specific objectives and common priorities, research, and policies to address mixtures will likely remain scattered and insufficient. © 2019 The Authors
  •  
2.
  • Bopp, Stephanie K., et al. (author)
  • Current EU research activities on combined exposure to multiple chemicals
  • 2018
  • In: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 120, s. 544-562
  • Research review (peer-reviewed)abstract
    • Humans and wildlife are exposed to an intractably large number of different combinations of chemicals via food, water, air, consumer products, and other media and sources. This raises concerns about their impact on public and environmental health. The risk assessment of chemicals for regulatory purposes mainly relies on the assessment of individual chemicals. If exposure to multiple chemicals is considered in a legislative framework, it is usually limited to chemicals falling within this framework and co-exposure to chemicals that are covered by a different regulatory framework is often neglected. Methodologies and guidance for assessing risks from combined exposure to multiple chemicals have been developed for different regulatory sectors, however, a harmonised, consistent approach for performing mixture risk assessments and management across different regulatory sectors is lacking. At the time of this publication, several EU research projects are running, funded by the current European Research and Innovation Programme Horizon 2020 or the Seventh Framework Programme. They aim at addressing knowledge gaps and developing methodologies to better assess chemical mixtures, by generating and making available internal and external exposure data, developing models for exposure assessment, developing tools for in silico and in vitro effect assessment to be applied in a tiered framework and for grouping of chemicals, as well as developing joint epidemiological-toxicological approaches for mixture risk assessment and for prioritising mixtures of concern. The projects EDC-MixRisk, EuroMix, EUToxRisk, HBM4EU and SOLUTIONS have started an exchange between the consortia, European Commission Services and EU Agencies, in order to identify where new methodologies have become available and where remaining gaps need to be further addressed. This paper maps how the different projects contribute to the data needs and assessment methodologies and identifies remaining challenges to be further addressed for the assessment of chemical mixtures.
  •  
3.
  • Buekers, J, et al. (author)
  • Development of Policy Relevant Human Biomonitoring Indicators for Chemical Exposure in the European Population
  • 2018
  • In: International journal of environmental research and public health. - : MDPI AG. - 1660-4601. ; 15:10
  • Journal article (peer-reviewed)abstract
    • The European Union’s 7th Environmental Action Programme (EAP) aims to assess and minimize environmental health risks from the use of hazardous chemicals by 2020. From this angle, policy questions like whether an implemented policy to reduce chemical exposure has had an effect over time, whether the health of people in specific regions or subpopulations is at risk, or whether the body burden of chemical substances (the internal exposure) varies with, for example, time, country, sex, age, or socio-economic status, need to be answered. Indicators can help to synthesize complex scientific information into a few key descriptors with the purpose of providing an answer to a non-expert audience. Human biomonitoring (HBM) indicators at the European Union (EU) level are unfortunately lacking. Within the Horizon2020 European Human Biomonitoring project HBM4EU, an approach to develop European HBM indicators was worked out. To learn from and ensure interoperability with other European indicators, 15 experts from the HBM4EU project (German Umweltbundesamt (UBA), Flemish research institute VITO, University of Antwerp, European Environment Agency (EEA)), and the World Health Organization (WHO), European Core Health Indicator initiative (ECHI), Eurostat, Swiss ETH Zurich and the Czech environmental institute CENIA, and contributed to a workshop, held in June 2017 at the EEA in Copenhagen. First, selection criteria were defined to evaluate when and if results of internal chemical exposure measured by HBM, need to be translated into a European HBM-based indicator. Two main aspects are the HBM indicator’s relevance for policy, society, health, and the quality of the biomarker data (availability, comparability, ease of interpretation). Secondly, an approach for the calculation of the indicators was designed. Two types of indicators were proposed: ‘sum indicators of internal exposure’ derived directly from HBM biomarker concentrations and ‘indicators for health risk’, comparing HBM concentrations to HBM health-based guidance values (HBM HBGVs). In the latter case, both the percentage of the studied population exceeding the HBM HBGVs (PE) and the extent of exceedance (EE), calculated as the population’s exposure level divided by the HBM HBGV, can be calculated. These indicators were applied to two examples of hazardous chemicals: bisphenol A (BPA) and per- and polyfluoroalkyl substances (PFASs), which both have high policy and societal relevance and for which high quality published data were available (DEMOCOPHES, Swedish monitoring campaign). European HBM indicators help to summarize internal exposure to chemical substances among the European population and communicate to what degree environmental policies are successful in keeping internal exposures sufficiently low. The main aim of HBM indicators is to allow follow-up of chemical safety in Europe.
  •  
4.
  • Flaviani, Flavia, et al. (author)
  • Distinct Oceanic Microbiomes From Viruses to Protists Located Near the Antarctic Circumpolar Current
  • 2018
  • In: Frontiers in Microbiology. - : FRONTIERS MEDIA SA. - 1664-302X. ; 9
  • Journal article (peer-reviewed)abstract
    • Microbes occupy diverse ecological niches and only through recent advances in next generation sequencing technologies have the true microbial diversity been revealed. Furthermore, lack of perceivable marine barriers to genetic dispersal (i.e., mountains or islands) has allowed the speculation that organisms that can be easily transported by currents and therefore proliferate everywhere. That said, ocean currents are now commonly being recognized as barriers for microbial dispersal. Here we analyzed samples collected from a total of six stations, four located in the Indian Ocean, and two in the Southern Ocean. Amplicon sequencing was used to characterize both prokaryotic and eukaryotic plankton communities, while shotgun sequencing was used for the combined environmental DNA (eDNA), microbial eDNA (meDNA), and viral fractions. We found that Cyanobacteria dominated the prokaryotic component in the South-West Indian Ocean, while gamma-Proteobacteria dominated the South-East Indian Ocean. A combination of gamma- and alpha-Proteobacteria dominated the Southern Ocean. Alveolates dominated almost exclusively the eukaryotic component, with variation in the ratio of Protoalveolata and Dinoflagellata depending on station. However, an increase in haptophyte relative abundance was observed in the Southern Ocean. Similarly, the viral fraction was dominated by members of the order Caudovirales across all stations; however, a higher presence of nucleocytoplasmic large DNA viruses (mainly chloroviruses and mimiviruses) was observed in the Southern Ocean. To our knowledge, this is the first that a statistical difference in the microbiome (from viruses to protists) between the subtropical Indian and Southern Oceans. We also show that not all phylotypes can be found everywhere, and that meDNA is not a suitable resource for monitoring aquatic microbial diversity.
  •  
5.
  •  
6.
  • Kullander, Klas, et al. (author)
  • Role of EphA4 and EphrinB3 in local neuronal circuits that control walking
  • 2003
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 299:5614, s. 1889-1892
  • Journal article (peer-reviewed)abstract
    • Local circuits in the spinal cord that generate locomotion are termed central pattern generators (CPGs). These provide coordinated bilateral control over the normal limb alternation that underlies walking. The molecules that organize the mammalian CPG are unknown. Isolated spinal cords from mice lacking either the EphA4 receptor or its ligand ephrinB3 have lost left-right limb alternation and instead exhibit synchrony. We identified EphA4-positive neurons as an excitatory component of the locomotor CPG. Our study shows that dramatic locomotor changes can occur as a consequence of local genetic rewiring and identifies genes required for the development of normal locomotor behavior.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view