SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lebreton Yveline) "

Search: WFRF:(Lebreton Yveline)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andrae, Rene, et al. (author)
  • First stellar parameters from Apsis
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 616
  • Journal article (peer-reviewed)abstract
    • The second Gaia data release (Gaia DR2) contains, beyond the astrometry, three-band photometry for 1.38 billion sources. One band is the G band, the other two were obtained by integrating the Gaia prism spectra (BP and RP). We have used these three broad photometric bands to infer stellar effective temperatures, T-eff, for all sources brighter than G = 17 mag with T-eff in the range 3000-10 000K (some 161 million sources). Using in addition the parallaxes, we infer the line-of-sight extinction, A(G), and the reddening, E(BP-RP), for 88 million sources. Together with a bolometric correction we derive luminosity and radius for 77 million sources. These quantities as well as their estimated uncertainties are part of Gaia DR2. Here we describe the procedures by which these quantities were obtained, including the underlying assumptions, comparison with literature estimates, and the limitations of our results. Typical accuracies are of order 324K (T-eff), 0.46 mag (A(G)), 0.23 mag (E(BP-RP)), 15% (luminosity), and 10% (radius). Being based on only a small number of observable quantities and limited training data, our results are necessarily subject to some extreme assumptions that can lead to strong systematics in some cases (not included in the aforementioned accuracy estimates). One aspect is the non-negativity contraint of our estimates, in particular extinction, which we discuss. Yet in several regions of parameter space our results show very good performance, for example for red clump stars and solar analogues. Large uncertainties render the extinctions less useful at the individual star level, but they show good performance for ensemble estimates. We identify regimes in which our parameters should and should not be used and we define a "clean" sample. Despite the limitations, this is the largest catalogue of uniformly-inferred stellar parameters to date. More precise and detailed astrophysical parameters based on the full BP/RP spectrophotometry are planned as part of the third Gaia data release.
  •  
2.
  • Serenelli, Aldo, et al. (author)
  • Weighing stars from birth to death : mass determination methods across the HRD
  • 2021
  • In: Astronomy and Astrophysics Review. - : Springer Science and Business Media LLC. - 0935-4956 .- 1432-0754. ; 29:1
  • Research review (peer-reviewed)abstract
    • The mass of a star is the most fundamental parameter for its structure, evolution, and final fate. It is particularly important for any kind of stellar archaeology and characterization of exoplanets. There exist a variety of methods in astronomy to estimate or determine it. In this review we present a significant number of such methods, beginning with the most direct and model-independent approach using detached eclipsing binaries. We then move to more indirect and model-dependent methods, such as the quite commonly used isochrone or stellar track fitting. The arrival of quantitative asteroseismology has opened a completely new approach to determine stellar masses and to complement and improve the accuracy of other methods. We include methods for different evolutionary stages, from the pre-main sequence to evolved (super)giants and final remnants. For all methods uncertainties and restrictions will be discussed. We provide lists of altogether more than 200 benchmark stars with relative mass accuracies between [0.3 , 2] % for the covered mass range of M∈[0.1,16]M⊙, 75 % of which are stars burning hydrogen in their core and the other 25 % covering all other evolved stages. We close with a recommendation how to combine various methods to arrive at a “mass-ladder” for stars.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view