SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lee Daewon) "

Search: WFRF:(Lee Daewon)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lee, Amos C., et al. (author)
  • OPENchip : an on-chip in situ molecular profiling platform for gene expression analysis and oncogenic mutation detection in single circulating tumour cells
  • 2020
  • In: Lab on a Chip. - : Royal Society of Chemistry (RSC). - 1473-0197 .- 1473-0189. ; 20:5, s. 912-922
  • Journal article (peer-reviewed)abstract
    • Liquid biopsy holds promise towards practical implementation of personalized theranostics of cancer. In particular, circulating tumour cells (CTCs) can provide clinically actionable information that can be directly linked to prognosis or therapy decisions. In this study, gene expression patterns and genetic mutations in single CTCs are simultaneously analysed by strategically combining microfluidic technology and in situ molecular profiling technique. Towards this, the development and demonstration of the OPENchip (On-chip Post-processing ENabling chip) platform for single CTC analysis by epithelial CTC enrichment and subsequent in situ molecular profiling is reported. For in situ molecular profiling, padlock probes that identify specific desired targets to examine biomarkers of clinical relevance in cancer diagnostics were designed and used to create libraries of rolling circle amplification products. We characterize the OPENchip in terms of its capture efficiency and capture purity, and validate the probe design using different cell lines. By integrating the obtained results, molecular analyses of CTCs from metastatic breast cancer (HER2 (ERBB2) gene expression and PIK3CA mutations) and metastatic pancreatic cancer (KRAS gene mutations) patients were demonstrated without any off-chip processes. The results substantiate the potential implementation of early molecular detection of cancer through sequencing-free liquid biopsy.
  •  
2.
  • Ugawa, Masashi, et al. (author)
  • Reduced acoustic resonator dimensions improve focusing efficiency of bacteria and submicron particles
  • 2022
  • In: Analyst. - : Royal Society of Chemistry (RSC). - 1364-5528. ; 147:2, s. 274-281
  • Journal article (peer-reviewed)abstract
    • In this study, we demonstrate an acoustofluidic device that enables single-file focusing of submicron particles and bacteria using a two-dimensional (2D) acoustic standing wave. The device consists of a 100 μm × 100 μm square channel that supports 2D particle focusing in the channel center at an actuation frequency of 7.39 MHz. This higher actuation frequency compared with conventional bulk acoustic systems enables radiation-force-dominant motion of submicron particles and overcomes the classical size limitation (≈2 μm) of acoustic focusing. We present acoustic radiation force-based focusing of particles with diameters less than 0.5 μm at a flow rate of 12 μL min−1, and 1.33 μm particles at flow rates up to 80 μL min−1. The device focused 0.25 μm particles by the 2D acoustic radiation force while undergoing a channel cross-section centered, single-vortex acoustic streaming. A suspension of bacteria was also investigated to evaluate the biological relevance of the device, which demonstrated the alignment of bacteria in the channel at aflow rate of up to 20 μL min−1. The developed acoustofluidic device can align submicron particles within a narrow flow stream in a highly robust manner, validating its use as a flow-through focusing chamber to perform high-throughput and accurate flow cytometry of submicron objects
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view