SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lessard Therrien Malie) "

Search: WFRF:(Lessard Therrien Malie)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lessard-Therrien, Malie, et al. (author)
  • A phylogenetic comparative study of flowering phenology along an elevational gradient in the Canadian subarctic
  • 2014
  • In: International journal of biometeorology. - : Springer Science and Business Media LLC. - 0020-7128 .- 1432-1254. ; 58:4, s. 455-462
  • Journal article (peer-reviewed)abstract
    • Climate change is affecting high-altitude and high-latitude communities in significant ways. In the short growing season of subarctic habitats, it is essential that the timing and duration of phenological phases match favorable environmental conditions. We explored the time of the first appearance of flowers (first flowering day, FFD) and flowering duration across subarctic species composing different communities, from boreal forest to tundra, along an elevational gradient (600-800 m). The study was conducted on Mount Irony (856 m), North-East Canada (54A degrees 90'N, 67A degrees 16'W) during summer 2012. First, we quantified phylogenetic signal in FFD at different spatial scales. Second, we used phylogenetic comparative methods to explore the relationship between FFD, flowering duration, and elevation. We found that the phylogenetic signal for FFD was stronger at finer spatial scales and at lower elevations, indicating that closely related species tend to flower at similar times when the local environment is less harsh. The comparatively weaker phylogenetic signal at higher elevation may be indicative of convergent evolution for FFD. Flowering duration was correlated significantly with mean FFD, with later-flowering species having a longer flowering duration, but only at the lowest elevation. Our results indicate significant evolutionary conservatism in responses to phenological cues, but high phenotypic plasticity in flowering times. We suggest that phylogenetic relationships should be considered in the search for predictions and drivers of flowering time in comparative analyses, because species cannot be considered as statistically independent. Further, phenological drivers should be measured at spatial scales such that variation in flowering matches variation in environment.
  •  
2.
  • Lessard-Therrien, Malie, et al. (author)
  • Predicting flowering phenology in a subarctic plant community
  • 2014
  • In: Botany. - : Canadian Science Publishing. - 1916-2790 .- 1916-2804. ; 92:10, s. 749-756
  • Journal article (peer-reviewed)abstract
    • Phenological studies are rarely reported from arctic and subarctic regions, but are essential to evaluate species' response to climate change in these rapidly warming ecosystems. Here, we present a phylogenetic analysis of flowering phenology across an elevational gradient in the Canadian subarctic. We found that the timing of first flower was best explained by a combination of snowmelt, elevation, and growing degree-days. We also show that early flowering species have demonstrated lower intraspecific variability in their response to climate cues in comparison with late flowering species, such that individual flowering times of early species are more closely tied to environmental predictors. Previous work has suggested that early flowering species are more variable in their phenology. However, these studies have mostly examined variation in phenology over time, whereas we examined variation in phenology over space. We suggest that both patterns can be explained by the tighter coupling between phenology and climate cues for early flowering species. Thus, early flowering species have low intraspecific variance in flowering times within a single growing season as individuals respond more uniformly to a common set of cues in comparison with late flowering species. However, these same species may show large variance between years reflecting interannual variation in climate.
  •  
3.
  • MacDougall, Andrew S., et al. (author)
  • Comparison of the distribution and phenology of Arctic Mountain plants between the early 20th and 21st centuries
  • 2021
  • In: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 27:20, s. 5070-5083
  • Journal article (peer-reviewed)abstract
    • Arctic plants are adapted to climatic variability, but their long-term responses to warming remain unclear. Responses may occur by range shifts, phenological adjustments in growth and reproduction, or both. Here, we compare distribution and phenology of 83 arctic and boreal mountain species, sampled identically in the early 20th (1917-1919) and 21st centuries (2017-2018) from a region of northern Sweden that has warmed significantly. We test two compensatory hypotheses to high-latitude warming-upward shifts in distribution, and earlier or extended growth and reproduction. For distribution, we show dramatic upward migration by 69% of species, averaging 6.1 m per decade, especially boreal woodland taxa whose upward expansion has reduced arctic montane habitat by 30%. Twenty percent of summit species showed distributional shifts but downward, especially moisture-associated snowbed flora. For phenology, we detected wide inter-annual variability in the onset of leafing and flowering in both eras. However, there was no detectable change in growing-season length, relating to two mechanisms. First, plot-level snow melt data starting in 1917 demonstrated that melt date, rather than vernal temperatures, better predicts plant emergence, with snow melt influenced by warmer years having greater snowfall-warmer springs did not always result in earlier emergence because snowbeds can persist longer. Second, the onset of reproductive senescence between eras was similar, even when plant emergence was earlier by a month, possibly due to intensified summer heat stress or hard-wired 'canalization' where senescence occurs regardless of summer temperature. Migrations in this system have possibly buffered arctic species against displacement by boreal expansion and warming, but ongoing temperature increases, woody plant invasion, and a potential lack of flexibility in timing of senescence may foreshadow challenges.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view