SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Li Haixia) "

Search: WFRF:(Li Haixia)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Li, Guoqiang, et al. (author)
  • Differential ice volume and orbital modulation of Quaternary moisture patterns between Central and East Asia
  • 2020
  • In: Earth and Planetary Science Letters. - : Elsevier. - 0012-821X .- 1385-013X. ; 530
  • Journal article (peer-reviewed)abstract
    • Desertification is of pressing environmental concern in large parts of Asia and directly affects millions of people. Arid Central Asia (ACA) in particular is highly sensitive to desertification and environmental change. Climate change in ACA may be driven by westerly circulation or monsoon variation. However, no consensus exists over their relative importance during the Quaternary and this greatly restricts our understanding of how this region may be affected by future climate change. Here we use the most detailed luminescence dating age model yet produced for ACA for three loess records in the Tianshan Mountains spanning the past 250 ka to show a sharp dichotomy in moisture variation between lowland and high mountain areas. The lowland areas of ACA are subjected to persistent aridity during past 250 ka, while highland areas clearly show dry-glacial and moist-interglacial changes, synchronous to moisture variability in monsoonal East Asia, and both co-varying with global ice volume and greenhouse gas (GHG) variation. In contrast, moisture variability across ACA within interglacials varies inversely with insolation-driven precessional changes. This is directly out of phase with the moisture changes of East Asia, which co-vary with precessional insolation changes, and indicates the influence of Westerly circulation in ACA. Our Flexible Global Ocean-Atmosphere-Land System model simulations further reveal that coupled ice volume and GHG variations dominated climatic variability in both ACA and East Asia over glacial-interglacial cycles. However, the out of phase relationship between the intensity of the Westerly and East Asian monsoon systems during interglacial periods indicates that precessional forcing is responsible for differences in moisture patterns between ACA and East Asia. These observations indicate that moisture levels will not increase even in high altitude regions of ACA over the next several millennia; rather desertification is likely to worsen resulting from stabilization of the Westerlies as a result of low summer insolation.
  •  
2.
  • Luo, Yifei, et al. (author)
  • Technology Roadmap for Flexible Sensors
  • 2023
  • In: ACS Nano. - : American Chemical Society. - 1936-0851 .- 1936-086X. ; 17:6, s. 5211-5295
  • Research review (peer-reviewed)abstract
    • Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
  •  
3.
  • Yin, Yue, et al. (author)
  • Separable Microneedle Patch to Protect and Deliver DNA Nanovaccines Against COVID-19
  • 2021
  • In: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 15:9, s. 14347-14359
  • Journal article (peer-reviewed)abstract
    • The successful control of coronavirus disease 2019 (COVID-19) pandemic is not only relying on the development of vaccines, but also depending on the storage, transportation, and administration of vaccines. Ideally, nucleic acid vaccine should be directly delivered to proper immune cells or tissue (such as lymph nodes). However, current developed vaccines are normally treated through intramuscular injection, where immune cells do not normally reside. Meanwhile, current nucleic acid vaccines must be stored in a frozen state that may hinder their application in developing countries. Here, we report a separable microneedle (SMN) patch to deliver polymer encapsulated spike (or nucleocapsid) protein encoding DNA vaccines and immune adjuvant for efficient immunization. Compared with intramuscular injection, SMN patch can deliver nanovaccines into intradermal for inducing potent and durable adaptive immunity. IFN-gamma(+)CD4/8(+) and IL-2(+)CD4/8(+) T cells or virus specific IgG are significantly increased after vaccination. Moreover, in vivo results show the SMN patches can be stored at room temperature for at least 30 days without decreases in immune responses. These features of nanovaccines-laden SMN patch are important for developing advanced COVID-19 vaccines with global accessibility.
  •  
4.
  • Du, Yong, et al. (author)
  • Preparation and Thermoelectric Properties of Graphite/poly(3,4-ethyenedioxythiophene) Nanocomposites
  • 2018
  • In: Energies. - : MDPI. - 1996-1073. ; 11:10
  • Journal article (peer-reviewed)abstract
    • Graphite/poly(3,4-ethyenedioxythiophene) (PEDOT) nanocomposites were prepared by an in-situ oxidative polymerization process. The electrical conductivity and Seebeck coefficient of the graphite/PEDOT nanocomposites with different content of graphite were measured in the temperature range from 300 K to 380 K. The results show that as the content of graphite increased from 0 to 37.2 wt %, the electrical conductivity of the nanocomposites increased sharply from 3.6 S/cm to 80.1 S/cm, while the Seebeck coefficient kept almost the same value (in the range between 12.0 V/K to 15.1 V/K) at 300 K, which lead to an increased power factor. The Seebeck coefficient of the nanocomposites increased from 300 K to 380 K, while the electrical conductivity did not substantially depend on the measurement temperature. As a result, a power factor of 3.2 Wm(-1) K-2 at 380 K was obtained for the nanocomposites with 37.2 wt % graphite.
  •  
5.
  • Lu, Yang, et al. (author)
  • sp-Carbon Incorporated Conductive Metal-Organic Framework as Photocathode for Photoelectrochemical Hydrogen Generation
  • 2022
  • In: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 61:39
  • Journal article (peer-reviewed)abstract
    • Metal-organic frameworks (MOFs) have attracted increasing interest for broad applications in catalysis and gas separation due to their high porosity. However, the insulating feature and the limited active sites hindered MOFs as photocathode active materials for application in photoelectrocatalytic hydrogen generation. Herein, we develop a layered conductive two-dimensional conjugated MOF (2D c-MOF) comprising sp-carbon active sites based on arylene-ethynylene macrocycle ligand via CuO4 linking, named as Cu3HHAE2. This sp-carbon 2D c-MOF displays apparent semiconducting behavior and broad light absorption till the near-infrared band (1600 nm). Due to the abundant acetylene units, the Cu3HHAE2 could act as the first case of MOF photocathode for photoelectrochemical (PEC) hydrogen generation and presents a record hydrogen-evolution photocurrent density of ≈260 μA cm−2 at 0 V vs. reversible hydrogen electrode among the structurally-defined cocatalyst-free organic photocathodes.
  •  
6.
  • Yin, Yue, et al. (author)
  • In Situ Transforming RNA Nanovaccines from Polyethylenimine Functionalized Graphene Oxide Hydrogel for Durable Cancer Immunotherapy
  • 2021
  • In: Nano Letters. - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 21:5, s. 2224-2231
  • Journal article (peer-reviewed)abstract
    • Messenger RNA (mRNA) vaccine is a promising candidate in cancer immunotherapy as it can encode tumor-associated antigens with an excellent safety profile. Unfortunately, the inherent instability of RNA and translational efficiency are major limitations of RNA vaccine. Here, we report an injectable hydrogel formed with graphene oxide (GO) and polyethylenimine (PEI), which can generate mRNA (ovalbumin, a model antigen) and adjuvants (R848)-laden nanovaccines for at least 30 days after subcutaneous injection. The released nanovaccines can protect the mRNA from degradation and confer targeted delivering capacity to lymph nodes. The data show that this transformable hydrogel can significantly increase the number of antigen-specific CD8+ T cells and subsequently inhibit the tumor growth with only one treatment. Meanwhile, this hydrogel can generate an antigen specific antibody in the serum which in turn prevents the occurrence of metastasis. Collectively, these results demonstrate the potential of the PEI-functionalized GO transformable hydrogel for effective cancer immunotherapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view