SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Li Huifang) "

Search: WFRF:(Li Huifang)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Feng, Chungang, et al. (author)
  • A cis-Regulatory Mutation of PDSS2 Causes Silky-Feather in Chickens
  • 2014
  • In: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 10:8, s. e1004576-
  • Journal article (peer-reviewed)abstract
    • Silky-feather has been selected and fixed in some breeds due to its unique appearance. This phenotype is caused by a single recessive gene (hookless, h). Here we map the silky-feather locus to chromosome 3 by linkage analysis and subsequently fine-map it to an 18.9 kb interval using the identical by descent (IBD) method. Further analysis reveals that a C to G transversion located upstream of the prenyl (decaprenyl) diphosphate synthase, subunit 2 (PDSS2) gene is causing silky-feather. All silky-feather birds are homozygous for the G allele. The silky-feather mutation significantly decreases the expression of PDSS2 during feather development in vivo. Consistent with the regulatory effect, the C to G transversion is shown to remarkably reduce PDSS2 promoter activity in vitro. We report a new example of feather structure variation associated with a spontaneous mutation and provide new insight into the PDSS2 function.
  •  
2.
  • Wang, Yanqiang, et al. (author)
  • The Crest Phenotype in Chicken Is Associated with Ectopic Expression of HOXC8 in Cranial Skin
  • 2012
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:4, s. e34012-
  • Journal article (peer-reviewed)abstract
    • The Crest phenotype is characterised by a tuft of elongated feathers atop the head. A similar phenotype is also seen in several wild bird species. Crest shows an autosomal incompletely dominant mode of inheritance and is associated with cerebral hernia. Here we show, using linkage analysis and genome-wide association, that Crest is located on the E22C19W28 linkage group and that it shows complete association to the HOXC-cluster on this chromosome. Expression analysis of tissues from Crested and non-crested chickens, representing 26 different breeds, revealed that HOXC8, but not HOXC12 or HOXC13, showed ectopic expression in cranial skin during embryonic development. We propose that Crest is caused by a cis-acting regulatory mutation underlying the ectopic expression of HOXC8. However, the identification of the causative mutation(s) has to await until a method becomes available for assembling this chromosomal region. Crest is unfortunately located in a genomic region that has so far defied all attempts to establish a contiguous sequence.
  •  
3.
  • Guo, Ying, et al. (author)
  • Mapping and Functional Dissection of the Rumpless Trait in Piao Chicken Identifies a Causal Loss of Function Mutation in the Novel Gene Rum
  • 2023
  • In: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 40:12
  • Journal article (peer-reviewed)abstract
    • Rumpless chickens exhibit an abnormality in their tail development. The genetics and biology of this trait has been studied for decades to illustrate a broad variation in both the types of inheritance and the severity in the developmental defects of the tail. In this study, we created a backcross pedigree by intercrossing Piao (rumpless) with Xianju (normal) to investigate the genetic mechanisms and molecular basis of the rumpless trait in Piao chicken. Through genome-wide association and linkage analyses, the candidate region was fine-mapped to 798.5 kb (chromosome 2: 86.9 to 87.7 Mb). Whole-genome sequencing analyses identified a single variant, a 4.2 kb deletion, which was completely associated with the rumpless phenotype. Explorations of the expression data identified a novel causative gene, Rum, that produced a long, intronless transcript across the deletion. The expression of Rum is embryo-specific, and it regulates the expression of MSGN1, a key factor in regulating T-box transcription factors required for mesoderm formation and differentiation. These results provide genetic and molecular experimental evidence for a novel mechanism regulating tail development in chicken and report the likely causal mutation for the tail abnormity in the Piao chicken. The novel regulatory gene, Rum, will, due to its role in fundamental embryo development, be of interest for further explorations of a potential role in tail and skeletal development also in other vertebrates.
  •  
4.
  • An, Rui, et al. (author)
  • Photostability and Photodegradation Processes in Colloidal CsPbI3 Perovskite Quantum Dots
  • 2018
  • In: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 10:45, s. 39222-39227
  • Journal article (peer-reviewed)abstract
    • All-inorganic CsPbI3 perovskite quantum dots (QDs) have attracted intense attention for their successful application in photovoltaics (PVs) and optoelectronics that are enabled by their superior absorption capability and great photoluminescence (PL) properties. However, their photostability remains a practical bottleneck and further optimization is highly desirable. Here, we studied the photostability of as-obtained colloidal CsPbI3 QDs suspended in hexane. We found that light illumination does induce photodegradation of CsPbI3 QDs. Steady-state spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and transient absorption spectroscopy verified that light illumination leads to detachment of the capping agent, collapse of the CsPbI3 QD surface, and finally aggregation of surface Pb0. Both dangling bonds containing surface and Pb0 serve as trap states causing PL quenching with a dramatic decrease of PL quantum yield. Our work provides a detailed insight about the correlation between the structural and photophysical consequences of the photodegradation process in CsPbI3 QDs and may lead to the optimization of such QDs toward device applications.
  •  
5.
  • Guo, Ying, et al. (author)
  • Researching on the fine structure and admixture of the worldwide chicken population reveal connections between populations and important events in breeding history
  • 2021
  • In: Evolutionary Applications. - : John Wiley & Sons. - 1752-4571.
  • Journal article (peer-reviewed)abstract
    • Here, we have evaluated the general genomic structure and diversity and studied the divergence resulting from selection and historical admixture events for a collection of worldwide chicken breeds. In total, 636 genomes (43 populations) were sequenced from chickens of American, Chinese, Indonesian, and European origin. Evaluated populations included wild junglefowl, rural indigenous chickens, breeds that have been widely used to improve modern western poultry populations and current com-mercial stocks bred for efficient meat and egg production. In-depth characteriza-tions of the genome structure and genomic relationships among these populations were performed, and population admixture events were investigated. In addition, the genomic architectures of several domestication traits and central documented events in the recent breeding history were explored. Our results provide detailed insights into the contributions from population admixture events described in the historical literature to the genomic variation in the domestic chicken. In particular, we find that the genomes of modern chicken stocks used for meat production both in eastern (Asia) and western (Europe/US) agriculture are dominated by contributions from heavy Asian breeds. Further, by exploring the link between genomic selective divergence and pigmentation, connections to functional genes feather coloring were confirmed.
  •  
6.
  • Xu, Jiangchang, et al. (author)
  • Automatic segmentation of orbital wall from CT images via a thin wall region supervision-based multi-scale feature search network
  • 2023
  • In: International Journal of Computer Assisted Radiology and Surgery. - : Springer Nature. - 1861-6410 .- 1861-6429. ; 18:11, s. 2051-2062
  • Journal article (peer-reviewed)abstract
    • Purpose: Orbital wall segmentation is critical for orbital measurement and reconstruction. However, the orbital floor and medial wall are made up of thin walls (TW) with low gradient values, making it difficult to segment the blurred areas of the CT images. Clinically, doctors have to manually repair the missing parts of TW, which is time-consuming and laborious. Methods: To address these issues, this paper proposes an automatic orbital wall segmentation method based on TW region supervision using a multi-scale feature search network. First of all, in the encoding branch, the densely connected atrous spatial pyramid pooling based on the residual connection is adopted to achieve a multi-scale feature search. Then, for feature enhancement, multi-scale up-sampling and residual connection are applied to perform skip connection of features in multi-scale convolution. Finally, we explore a strategy for improving the loss function based on the TW region supervision, which effectively increases the TW region segmentation accuracy. Results: The test results show that the proposed network performs well in terms of automatic segmentation. For the whole orbital wall region, the Dice coefficient (Dice) of segmentation accuracy reaches 96.086 ± 1.049%, the Intersection over Union (IOU) reaches 92.486 ± 1.924%, and the 95% Hausdorff distance (HD) reaches 0.509 ± 0.166 mm. For the TW region, the Dice reaches 91.470 ± 1.739%, the IOU reaches 84.327 ± 2.938%, and the 95% HD reaches 0.481 ± 0.082 mm. Compared with other segmentation networks, the proposed network improves the segmentation accuracy while filling the missing parts in the TW region. Conclusion: In the proposed network, the average segmentation time of each orbital wall is only 4.05 s, obviously improving the segmentation efficiency of doctors. In the future, it may have a practical significance in clinical applications such as preoperative planning for orbital reconstruction, orbital modeling, orbital implant design, and so on.
  •  
7.
  • Zhang, Zebin, et al. (author)
  • Whole-genome resequencing reveals signatures of selection and timing of duck domestication
  • 2018
  • In: GigaScience. - : OXFORD UNIV PRESS. - 2047-217X. ; 7:4
  • Journal article (peer-reviewed)abstract
    • Background: The genetic basis of animal domestication remains poorly understood, and systems with substantial phenotypic differences between wild and domestic populations are useful for elucidating the genetic basis of adaptation to new environments as well as the genetic basis of rapid phenotypic change. Here, we sequenced the whole genome of 78 individual ducks, from two wild and seven domesticated populations, with an average sequencing depth of 6.42X per individual. Results: Our population and demographic analyses indicate a complex history of domestication, with early selection for separate meat and egg lineages. Genomic comparison of wild to domesticated populations suggests that genes that affect brain and neuronal development have undergone strong positive selection during domestication. Our F-ST analysis also indicates that the duck white plumage is the result of selection at the melanogenesis-associated transcription factor locus. Conclusions: Our results advance the understanding of animal domestication and selection for complex phenotypic traits.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view