SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Li Yukun) "

Search: WFRF:(Li Yukun)

  • Result 1-10 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Li, Yaohui, et al. (author)
  • Improved efficiency of organic solar cell using MoS2 doped poly (3,4-ethylenedioxythiophene)(PEDOT) as hole transport layer
  • 2022
  • In: Applied Surface Science. - : ELSEVIER. - 0169-4332 .- 1873-5584. ; 590
  • Journal article (peer-reviewed)abstract
    • We report an efficient hole transporting layer (HTL) for organic solar cell (OSC) based on solution-processed organic-inorganic hybrid composed of ultrasonic-exfoliated MoS2 nanosheets and dopamine-copolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) derivative (DA-P). The OSCs based on this new hybrid HTL show a marked performance improvement over those with single-component HTLs, and they retain up to 80% of their original power conversion efficiency after 35 days. Our investigations reveal that the boost in performance is due to a synergistic effect that improves both hole transport and extraction ability. This effect is mainly due to the doping of exfoliated-MoS2 nanosheets on DA-P. We employ a comprehensive range of spectroscopies to uncover that the dopant is derived from the oxidation products of MoS2 nanosheets during the ultrasonic exfoliation. Our work demonstrates an efficient hybrid HTL and offers new insights into the interaction of exfoliated-MoS2 nanosheets and the PEDOT derivatives.
  •  
3.
  • Ding, Huaiyi, et al. (author)
  • Maximizing Integrated Optical and Electrical Properties of a Single ZnO Nanowire through Native Interfacial Doping
  • 2014
  • In: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 26:19, s. 3035-3041
  • Journal article (peer-reviewed)abstract
    • A native interfacial doping layer introduced in core-shell type ZnO nanowires by a simple vapor phase re-growth procedure endows the produced nanowires with both excellent electrical and optical performances compared to conventional homogeneous ZnO nanowires. The unique Zn-rich interfacial structure in the core-shell nanowires plays a crucial role in the outstanding performances.
  •  
4.
  • Ding, Haoming, et al. (author)
  • Progress in Structural Tailoring and Properties of Ternary Layered Ceramics
  • 2023
  • In: Journal of Inorganic Materials. - : SCIENCE PRESS. - 1000-324X. ; 38:8, s. 845-884
  • Research review (peer-reviewed)abstract
    • MAX/MAB phases are a series of non-van der Waals ternary layered ceramic materials with a hexagonal structure, rich in elemental composition and crystal structure, and embody physical properties of both ceramics and metals. They exhibit great potential for applications in extreme environments such as high temperature, strong corrosion, and irradiation. In recent years, two-dimensional (2D) materials derived from the MAX/MAB phase (MXene and MBene) have attracted enormous interest in the fields of materials physics and materials chemistry and become a new 2D van der Waals material after graphene and transition metal dichalcogenides. Therefore, structural modulation of MAX/MAB phase materials is essential for understanding the intrinsic properties of this broad class of layered ceramics and for investigating the functional properties of their derived structures. In this paper, we summarize new developments in MAX/MAB phases in recent years in terms of structural modulation, theoretical calculation, and fundamental application research and provide an outlook on the key challenges and prospects for the future development of these layered materials.
  •  
5.
  • Hu, Yukun, et al. (author)
  • Peak and off-peak operations of the air separatino unit in oxy-fuel combustion power generation systems
  • 2013
  • In: Applied Energy. - : Elsevier BV. - 0306-2619 .- 1872-9118. ; 112:SI, s. 747-754
  • Journal article (peer-reviewed)abstract
    • Introducing CO2 capture and storage (CCS) into the power systems requires the re-investigation of the load balance for the electrical grid. For the oxy-coal combustion capture technology, the energy use of ASU can be shifted between the peak-load and off-peak-load periods, which may bring more benefits. In this paper, peak and off-peak (POP) operations for the air separation unit (ASU) with liquid oxygen storage were studied based on a 530 MW coal-fired power system. According to the simulation results, the oxy-coal combustion power system running POP is technically feasible that it can provide a base load of 496 MW during the off-peak period and a peak load of 613 MW during the peak period. And the equivalent efficiency of the power system running POP is only 0.3% lower than the one not running POP. Moreover, according to the economic assessments based on the net present value, it is also economically feasible that the payback time of the investment of the oxy-coal combustion power system running POP is about 13 years under the assumptions of 10% discount rate and 2.5% cost escalation rate. In addition, the effects of the difference of on-grid electricity prices, daily peak period, investment for POP operations, and ASU energy consumption were also analyzed, concerning the net present value.
  •  
6.
  •  
7.
  • Hu, Yukun, et al. (author)
  • Effects of flue gas recycle on oxy-coal power generation systems
  • 2012
  • In: Applied Energy. - : Elsevier BV. - 0306-2619 .- 1872-9118. ; 97, s. 255-263
  • Journal article (peer-reviewed)abstract
    • This paper examined and assessed various configuration options about emission removal including particles, SO x and NO x in an oxy-coal combustion system for CO 2 capture. A performance analysis was conducted in order to understand the impacts of those options concerning process design, process operation and system efficiency. Results show that different flue gas recycle options have clear effects on the emissivity and absorptivity of radiating gases in boiler due to the change of flue gas compositions. The maximum difference amongst various options can be up to 15% and 20% for emissivity and absorptivity respectively. As a result, the heat transfer by radiation can vary about 20%. The recycle options also have impacts on the design of air heater and selective-catalytic-reduction (SCR) preheater. This is due to that the largely varied operating temperatures in different options may result in different required areas of heat exchangers. In addition, the dew point of flue gas and the boiler efficiency are affected by the configurations of flue gas recycle as well.
  •  
8.
  •  
9.
  • Hu, Yukun, et al. (author)
  • Integration of Evaporative Gas Turbine with Oxy-Fuel Combustion for Carbon Dioxide Capture
  • 2010
  • In: International Journal of Green Energy. - : Informa UK Limited. - 1543-5075 .- 1543-5083. ; 7:6, s. 615-631
  • Journal article (peer-reviewed)abstract
    • This paper studied the integration of Evaporative Gas Turbine (EvGT) cycle with oxy-fuel combustion for CO2 capture. The impact of key parameters on system electrical efficiency, such as the oxygen purity, Water/Gas ratio (W/G) has been investigated concerning thermal efficiency. The performance of dry recycle and wet recycle also has be analyzed and compared. Simulation results shows that: (1) 97% can be considered as the optimum oxygen purity taking into account the trade-off between the air separation unit (ASU) consumption penalty of producing higher-purity oxygen and electrical efficiency; (2) there" exists an optimum point of W/G for both EvGT and EvGT combined with oxy-fuel combustion CO2 capture technology; (3) dry recycle has a" considerably higher electrical efficiency comparing with wet recycle, but more cooled water can be saved in the wet recycle. The performance of EvGT cycle was also compared to the combined cycle (CC) when CO2 capture was considered. The comparison shows that CC has a higher net power output and electrical efficiency than the EvGT cycle no matter if combined with oxy-fuel combustion CO2 capture technology or not.
  •  
10.
  • Hu, Yukun, et al. (author)
  • Numerical investigation of heat transfer characteristics in utility boilers of oxy-coal combustion
  • 2014
  • In: Applied Energy. - : Elsevier BV. - 0306-2619 .- 1872-9118. ; 130, s. 543-551
  • Journal article (peer-reviewed)abstract
    • Oxy-coal combustion has different flue gas composition from the conventional air-coal combustion. The different composition further results in different properties, such as the absorption coefficient, emissivity, and density, which can directly affect the heat transfer in both radiation and convection zones of utility boilers. This paper numerically studied a utility boiler of oxy-coal combustion and compares with air-coal combustion in terms of flame profile and heat transferred through boiler side walls in order to understand the effects of different operating conditions on oxy-coal boiler retrofitting and design. Based on the results, it was found that around 33 vol% of effective O-2 concentration ([O-2](effective)) the highest flame temperature and total heat transferred through boiler side walls in the oxy-coal combustion case match to those in the air-coal combustion case most; therefore, the 33 vol% of [O-2](effective) could result in the minimal change for the oxy-coal combustion retrofitting of the existing boiler. In addition, the increase of the moisture content in the flue gas has little impact on the flame temperature, but results in a higher surface incident radiation on boiler side walls. The area of heat exchangers in the boiler was also investigated regarding retrofitting. If boiler operates under a higher [O-2](effective), to rebalance the load of each heat exchanger in the boiler, the feed water temperature after economizer can be reduced or part of superheating surfaces can be moved into the radiation zone to replace part of the evaporators.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view