SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Zhenxi) "

Sökning: WFRF:(Li Zhenxi)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Zhenxi, et al. (författare)
  • Steel decarbonization in China–a top-down optimization model for exploring the first steps
  • 2023
  • Ingår i: Journal of Cleaner Production. - : Elsevier BV. - 0959-6526. ; 384
  • Tidskriftsartikel (refereegranskat)abstract
    • The steel industry is a major contributor to emissions of CO2 and key air pollutants. Reducing air pollution has since long been a policy priority in China. Reducing CO2 emissions has more recently also become a key priority partially manifested through the signing of the Paris Agreement in 2015. Although there are often synergies between reducing CO2 emissions and air pollution, it may have implications for the geographical location if one is prioritized over the other, with subsequent effects on local economies and overall policy efficiency. Therefore, we build a top-down optimization model to assess the provincial allocation of steel production, air pollution impact and the cost for meeting the target of peaking CO2 emissions in 2025 and reducing them by 30% in 2030. This short-term reduction target can be regarded as the first steps for China's steel industry to meet the national net zero target and the Pairs agreement. We analyze a scenario to minimize air pollution impact and compare this with a scenario to minimize CO2 mitigation costs. The results show that it is possible to peak CO2 emissions in 2025 and reduce them by 30% in 2030 but the resulting scrap demand requires increased quality scrap collection or imports. The total cost for different scenarios is similar but optimizing on abatement cost leads to lower cumulative CO2 emissions 2021–2030 compared to optimizing on pollution impact. If reducing pollution impact is the main objective, it leads to 22–26% lower pollution impact than when optimizing on abatement costs, and less primary production in densely populated areas. This implies that policy must handle trade-offs between cost optimal mitigation and pollution impact, as well as effects on local economies. Policy must also balance the accelerated introduction of Electric Arc Furnaces while simultaneously reducing overcapacity in primary production.
  •  
2.
  • Li, Zhenxi, et al. (författare)
  • Towards carbon neutrality : Transition pathways for the Chinese ethylene industry
  • 2024
  • Ingår i: Renewable and Sustainable Energy Reviews. - 1364-0321. ; 199
  • Tidskriftsartikel (refereegranskat)abstract
    • Ethylene is one of the most important products in the emissions-intensive petrochemical industry. Decarbonizing the ethylene industry is thus important for achieving global carbon neutrality. This study is the first to explore future long-term zero-emissions production pathways for the ethylene industry in China, the world's biggest ethylene producer. An optimization model was built in the context of China's carbon neutrality target of 2060. Four scenarios were developed where the policy ambitions for climate mitigation and for plastic management including waste were varied. Based on this, authors assessed the cumulative total emissions, technology options, future geographical location of ethylene production, and policy challenges associated with each scenario. This is also the first time that scope 3 emissions from waste incineration are included, motivated by the short lifetime of most ethylene products. Results show the cumulative CO2 emissions for the scenarios differ considerably, ranging from 4.3 to 7.8 Gt, even if carbon neutrality by 2060 is achieved in all scenarios. The results suggest that ambitious plastic focused policies can result in lower costs and less cumulative emissions compared to ambitious climate focused policies. The results demonstrate the importance of adopting CCS for waste incineration. This reduces cumulative CO2 emissions by up to 2 Gt. However, reduced overall demand and increased recycling rates should be priority options due to CCS challenges. Results suggest Chinese ethylene industry should adopt a mixed portfolio of production technologies, where the share of emission-intensive coal-based methanol-to-olefins is limited. These findings on decarbonization pathways can contribute to achieving the Paris agreement.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Nilsson, Lars J (2)
Åhman, Max (2)
Li, Zhenxi (2)
Bauer, Fredric (1)
Andersson, Fredrik N ... (1)
Lärosäte
Lunds universitet (2)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Teknik (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy