SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lisanti M.) "

Search: WFRF:(Lisanti M.)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • Apponi, A., et al. (author)
  • Heisenberg's uncertainty principle in the PTOLEMY project : A theory update
  • 2022
  • In: Physical Review D. - : American Physical Society. - 2470-0010 .- 2470-0029. ; 106:5
  • Journal article (peer-reviewed)abstract
    • We discuss the consequences of the quantum uncertainty on the spectrum of the electron emitted by the beta-processes of a tritium atom bound to a graphene sheet. We analyze quantitatively the issue recently raised by Cheipesh, Cheianov, and Boyarsky [Phys. Rev. D 104, 116004 (2021)], and discuss the relevant timescales and the degrees of freedom that can contribute to the intrinsic spread in the electron energy. We perform careful calculations of the potential between tritium and graphene with different coverages and geometries. With this at hand, we propose possible avenues to mitigate the effect of the quantum uncertainty.
  •  
4.
  • Betti, M. G., et al. (author)
  • Neutrino physics with the PTOLEMY project : active neutrino properties and the light sterile case
  • 2019
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP PUBLISHING LTD. - 1475-7516. ; :7
  • Journal article (peer-reviewed)abstract
    • The PTOLEMY project aims to develop a scalable design for a Cosmic Neutrino Background (CNB) detector, the first of its kind and the only one conceived that can look directly at the image of the Universe encoded in neutrino background produced in the first second after the Big Bang. The scope of the work for the next three years is to complete the conceptual design of this detector and to validate with direct measurements that the non-neutrino backgrounds are below the expected cosmological signal. In this paper we discuss in details the theoretical aspects of the experiment and its physics goals. In particular, we mainly address three issues. First we discuss the sensitivity of PTOLEMY to the standard neutrino mass scale. We then study the perspectives of the experiment to detect the CNB via neutrino capture on tritium as a function of the neutrino mass scale and the energy resolution of the apparatus. Finally, we consider an extra sterile neutrino with mass in the eV range, coupled to the active states via oscillations, which has been advocated in view of neutrino oscillation anomalies. This extra state would contribute to the tritium decay spectrum, and its properties, mass and mixing angle, could be studied by analyzing the features in the beta decay electron spectrum.
  •  
5.
  • Apponi, A., et al. (author)
  • Implementation and optimization of the PTOLEMY transverse drift electromagnetic filter
  • 2022
  • In: Journal of Instrumentation. - : IOP Publishing Ltd. - 1748-0221. ; 17:5
  • Journal article (peer-reviewed)abstract
    • The PTOLEMY transverse drift filter is a new concept to enable precision analysis of the energy spectrum of electrons near the tritium beta-decay endpoint. This paper details the implementation and optimization methods for successful operation of the filter for electrons with a known pitch angle. We present the first demonstrator that produces the required magnetic field properties with an iron return-flux magnet. Two methods for the setting of filter electrode voltages are detailed. The challenges of low-energy electron transport in cases of low field are discussed, such as the growth of the cyclotron radius with decreasing magnetic field, which puts a ceiling on filter performance relative to fixed filter dimensions. Additionally, low pitch angle trajectories are dominated by motion parallel to the magnetic field lines and introduce non-adiabatic conditions and curvature drift. To minimize these effects and maximize electron acceptance into the filter, we present a three-potential-well design to simultaneously drain the parallel and transverse kinetic energies throughout the length of the filter. These optimizations are shown, in simulation, to achieve low-energy electron transport from a 1 T iron core (or 3 T superconducting) starting field with initial kinetic energy of 18.6 keV drained to < 10 eV (< 1 eV) in about 80 cm. This result for low field operation paves the way for the first demonstrator of the PTOLEMY spectrometer for measurement of electrons near the tritium endpoint to be constructed at the Gran Sasso National Laboratory (LNGS) in Italy.
  •  
6.
  • Betti, M. G., et al. (author)
  • A design for an electromagnetic filter for precision energy measurements at the tritium endpoint
  • 2019
  • In: Progress in Particle and Nuclear Physics. - : Elsevier BV. - 0146-6410 .- 1873-2224. ; 106, s. 120-131
  • Research review (peer-reviewed)abstract
    • We present a detailed description of the electromagnetic filter for the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Starting with an initial estimate for the orbital magnetic moment, the higher-order drift process of E x B is configured to balance the gradient-B drift motion of the electron in such a way as to guide the trajectory into the standing voltage potential along the mid-plane of the filter. As a function of drift distance along the length of the filter, the filter zooms in with exponentially increasing precision on the transverse velocity component of the electron kinetic energy. This yields a linear dimension for the total filter length that is exceptionally compact compared to previous techniques for electromagnetic filtering. The parallel velocity component of the electron kinetic energy oscillates in an electrostatic harmonic trap as the electron drifts along the length of the filter. An analysis of the phase-space volume conservation validates the expected behavior of the filter from the adiabatic invariance of the orbital magnetic moment and energy conservation following Liouville's theorem for Hamiltonian systems.
  •  
7.
  • Lamb, R., et al. (author)
  • Co-ordination of cell cycle, migration and stem cell-like activity in breast cancer
  • 2014
  • In: Oncotarget. - 1949-2553. ; 5:17, s. 7833-7842
  • Journal article (peer-reviewed)abstract
    • Migration, proliferation and stem cell-like activity are all key cellular characteristics which aid the formation and progression of breast cancer, in addition to involvement in treatment resistance. Many current therapies aim to target tumour proliferation, and although successful, mortality rates in breast cancer remain significant. Our main objectives were to investigate the relationship between proliferation, migration and stem cell-like activity in breast cancer. We used a panel of cell lines and primary human breast cancer samples to assess the relationship between migration, proliferation and stem cells. We performed live cell sorting according to cell cycle (Hoechst-33324) and in combination with stem-cell markers (CD44/CD24/ESA) followed by assessment of migration and stem cell activity (mammosphere formation). We identified an inverse relationship between proliferation and migration/ stem cell-like activity. G0/1 cells showed increased migration and mammosphere formation. Furthermore we identified a subpopulation of low proliferative stem-like cells (CD44+/24lo/ESA+) with increased migration and mammosphere formation that are specifically inhibited by Dickkopf 1 (DKK1) and Dibenzazepine (DBZ) known stem-cell inhibitors. These data show the co-ordination of migration, proliferation and stem cell activity in breast cancer, and has identified a sub-population of stem-like cells, greatly adding to our understanding of the complex nature of stem cell biology.
  •  
8.
  • Ward, R., et al. (author)
  • Monocytes and macrophages, implications for breast cancer migration and stem cell-like activity and treatment
  • 2015
  • In: OncoTarget. - 1949-2553. ; 6:16, s. 14687-14699
  • Journal article (peer-reviewed)abstract
    • Macrophages are a major cellular constituent of the tumour stroma and contribute to breast cancer prognosis. The precise role and treatment strategies to target macrophages remain elusive. As macrophage infiltration is associated with poor prognosis and high grade tumours we used the THP-1 cell line to model monocytemacrophage differentiation in co-culture with four breast cancer cell lines (MCF7, T47D, MDA-MB-231, MDA-MB-468) to model in vivo cellular interactions. Polarisation into M1 and M2 subtypes was confirmed by specific cell marker expression of ROS and HLA-DR, respectively. Co-culture with all types of macrophage increased migration of ER-positive breast cancer cell lines, while M2-macrophages increased mammosphere formation, compared to M1-macrophages, in all breast cancer cells lines. Treatment of cells with Zoledronate in co-culture reduced the "pro-tumourigenic" effects (increased mammospheres/migration) exerted by macrophages. Direct treatment of breast cancer cells in homotypic culture was unable to reduce migration or mammosphere formation. Macrophages promote "pro-tumourigenic" cellular characteristics of breast cancer cell migration and stem cell activity. Zoledronate targets macrophages within the microenvironment which in turn, reduces the "pro-tumourigenic" characteristics of breast cancer cells. Zoledronate offers an exciting new treatment strategy for both primary and metastatic breast cancer.
  •  
9.
  • Wright, P. K., et al. (author)
  • 17 beta-estradiol regulates giant vesicle formation via estrogen receptor-alpha in human breast cancer cells
  • 2014
  • In: Oncotarget. - 1949-2553. ; 5:10, s. 3055-3065
  • Journal article (peer-reviewed)abstract
    • A significant proportion of the genes regulated by 17-beta-estradiol (E2) via estrogen receptor alpha (ER alpha) have roles in vesicle trafficking in breast cancer. Intracellular vesicle trafficking and extracellular vesicles have important roles in tumourigenesis. Here we report the discovery of giant (3-42 mu m) intracellular and extracellular vesicles (GVs) and the role of E2 on vesicle formation in breast cancer (BC) cell lines using three independent live cell imaging techniques. Large diameter vesicles, GVs were also identified in a patient-derived xenograft BC model, and in invasive breast carcinoma tissue. ER alpha-positive (MCF-7 and T47D) BC cell lines demonstrated a significant increase in GV formation after stimulation with E2 which was reversed by tamoxifen. ER alpha-negative (MDA-MB-231 and MDA-MB-468) BC cell lines produced GVs independently of E2 and tamoxifen. These results indicate the existence of both intracellular and extracellular vesicles with considerably larger dimensions than generally recognised with BC cells and suggest that the GVs are regulated by E2 via ER alpha in ER alpha-positive BC but by E2-independent mechanisms in ER-ve BC.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view