SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Littot Genevieve) "

Search: WFRF:(Littot Genevieve)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Fischer, Hubertus, et al. (author)
  • Reconstruction of millennial changes in dust emission, transport and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica
  • 2007
  • In: Earth and Planetary Science Letters. - : Elsevier BV. - 0012-821X. ; 260, s. 340-354
  • Journal article (peer-reviewed)abstract
    • Continuous sea salt and mineral dust aerosol records have been studied on the two EPICA (European Project for Ice Coring inAntarctica) deep ice cores. The joint use of these records from opposite sides of the East Antarctic plateau allows for an estimate ofchanges in dust transport and emission intensity as well as for the identification of regional differences in the sea salt aerosolsource. The mineral dust flux records at both sites show a strong coherency over the last 150 kyr related to dust emission changes inthe glacial Patagonian dust source with three times higher dust fluxes in the Atlantic compared to the Indian Ocean sector of theSouthern Ocean (SO). Using a simple conceptual transport model this indicates that transport can explain only 40% of theatmospheric dust concentration changes in Antarctica, while factor 5–10 changes occurred. Accordingly, the main cause for the strong glacial dust flux changes in Antarctica must lie in environmental changes in Patagonia. Dust emissions, hence environmentalconditions in Patagonia, were very similar during the last two glacials and interglacials, respectively, despite 2–4 °C warmertemperatures recorded in Antarctica during the penultimate interglacial than today. 2–3 times higher sea salt fluxes found in bothice cores in the glacial compared to the Holocene are difficult to reconcile with a largely unchanged transport intensity and thedistant open ocean source. The substantial glacial enhancements in sea salt aerosol fluxes can be readily explained assuming sea iceformation as the main sea salt aerosol source with a significantly larger expansion of (summer) sea ice in the Weddell Sea than inthe Indian Ocean sector. During the penultimate interglacial, our sea salt records point to a 50% reduction of winter sea icecoverage compared to the Holocene both in the Indian and Atlantic Ocean sector of the SO. However, from 20 to 80 ka beforepresent sea salt fluxes show only very subdued millennial changes despite pronounced temperature fluctuations, likely due to thelarge distance of the sea ice salt source to our drill sites.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view