SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Liu Meng 1976) "

Search: WFRF:(Liu Meng 1976)

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hyde, K. D., et al. (author)
  • Global consortium for the classification of fungi and fungus-like taxa
  • 2023
  • In: MYCOSPHERE. - : Mushroom Research Foundation. - 2077-7000 .- 2077-7019. ; 14:1, s. 1960-2012
  • Journal article (peer-reviewed)abstract
    • The Global Consortium for the Classification of Fungi and fungus-like taxa is an international initiative of more than 550 mycologists to develop an electronic structure for the classification of these organisms. The members of the Consortium originate from 55 countries/regions worldwide, from a wide range of disciplines, and include senior, mid-career and early-career mycologists and plant pathologists. The Consortium will publish a biannual update of the Outline of Fungi and fungus-like taxa, to act as an international scheme for other scientists. Notes on all newly published taxa at or above the level of species will be prepared and published online on the Outline of Fungi website (https://www.outlineoffungi.org/), and these will be finally published in the biannual edition of the Outline of Fungi and fungus-like taxa. Comments on recent important taxonomic opinions on controversial topics will be included in the biannual outline. For example, 'to promote a more stable taxonomy in Fusarium given the divergences over its generic delimitation', or 'are there too many genera in the Boletales?' and even more importantly, 'what should be done with the tremendously diverse 'dark fungal taxa?' There are undeniable differences in mycologists' perceptions and opinions regarding species classification as well as the establishment of new species. Given the pluralistic nature of fungal taxonomy and its implications for species concepts and the nature of species, this consortium aims to provide a platform to better refine and stabilise fungal classification, taking into consideration views from different parties. In the future, a confidential voting system will be set up to gauge the opinions of all mycologists in the Consortium on important topics. The results of such surveys will be presented to the International Commission on the Taxonomy of Fungi (ICTF) and the Nomenclature Committee for Fungi (NCF) with opinions and percentages of votes for and against. Criticisms based on scientific evidence with regards to nomenclature, classifications, and taxonomic concepts will be welcomed, and any recommendations on specific taxonomic issues will also be encouraged; however, we will encourage professionally and ethically responsible criticisms of others' work. This biannual ongoing project will provide an outlet for advances in various topics of fungal classification, nomenclature, and taxonomic concepts and lead to a community-agreed classification scheme for the fungi and fungus-like taxa. Interested parties should contact the lead author if they would like to be involved in future outlines.
  •  
2.
  • Song, Jiao-Jiao, et al. (author)
  • The 4f-Hybridization Strength in CemMnIn3m+2n Heavy-Fermion Compounds Studied by Angle-Resolved Photoemission Spectroscopy
  • 2021
  • In: Chinese Physics Letters. - : IOP Publishing. - 0256-307X .- 1741-3540. ; 38:10
  • Journal article (peer-reviewed)abstract
    • We systemically investigate the nature of Ce 4f electrons in structurally layered heavy-fermion compounds CemMnIn3m+2n (with M = Co, Rh, Jr, and Pt, m = 1, 2, n = 0-2), at low temperature using on-resonance angle-resolved photoemission spectroscopy. Three heavy quasiparticle bands f(0), f(7/2)(1) and f(5/2)(1), are observed in all compounds, whereas their intensities and energy locations vary greatly with materials. The strong f(0) states imply that the localized electron behavior dominates the Ce 4f states. The Ce 4f electrons are partially hybridized with the conduction electrons, making them have the dual nature of localization and itinerancy. Our quantitative comparison reveals that the f(5/2)(1)-f (0) intensity ratio is more suitable to reflect the 4f-state hybridization strength.
  •  
3.
  • Yuan, Ya Hua, et al. (author)
  • Angle-resolved photoemission spectroscopy view on the nature of Ce 4f electrons in the antiferromagnetic Kondo lattice CePd5Al2
  • 2021
  • In: Physical Review B. - : American Physical Society (APS). - 2469-9969 .- 2469-9950. ; 103:12
  • Journal article (peer-reviewed)abstract
    • We report an angle-resolved photoemission spectroscopy study of the antiferromagnetic Kondo lattice CePd5Al2, focusing on the quasi-two-dimensional k-space nature of its Fermi surface and, tuning photon energy to the Ce 4d-4f on-resonance transition, the hybridization of the Ce 4f state. A strong shoulder feature on the f0 peak was detected, suggesting hybridization between conduction and f bands. On-resonance spectra revealed narrow, yet hybridized quasiparticle bands with sharp peaks and ∼ 9 meV energy dispersion near the Fermi energy EF. The observed dispersive hybridized f band can be well described by a hybridization-band picture based on the periodic Anderson model (PAM). Hence, the 4f electrons in CePd5Al2 display a dual nature, with both localized and itinerant features, but with dominantly localized character.
  •  
4.
  • He, Xiaohe, et al. (author)
  • Real-time regulation of room temperature based on individual thermal sensation using an online brain–computer interface
  • 2022
  • In: Indoor Air. - : NLM (Medline). - 0905-6947 .- 1600-0668. ; 32:e13106
  • Journal article (peer-reviewed)abstract
    • Regulation of indoor temperature based on neurophysiological and psychological signals is one of the most promising technologies for intelligent buildings. In this study, we developed a system for closed-loop control of indoor temperature based on brain-computer interface (BCI) technology for the first time. Electroencephalogram (EEG) signals were collected from subjects for two room temperature categories (cool comfortable and hot uncomfortable) and used to build a thermal-sensation discrimination model (TSDM) with an ensemble learning method. Then, an online BCI system was developed based on the TSDM. In the online room temperature control experiment, when the TSDM detected that the subjects felt hot and uncomfortable, BCI would automatically turn on the air conditioner, and when the TSDM detected that the subjects felt cool and comfortable, BCI would automatically turn off the air conditioner. The results of online experiments in a hot environment showed that a BCI could significantly improve the thermal comfort of subjects (the subjective thermal comfort score decreased from 2.45 (hot uncomfortable) to 0.55 (cool comfortable), p < 0.001). A parallel experiment further showed that if the subjects wore thicker clothes during the experiment, the BCI would turn on the air conditioner for a longer time to ensure the thermal comfort of the subjects. This has further confirmed the effectiveness of TSDM model in evaluating thermal sensation under the dynamic change of room temperature and showed the model's good robustness. This study proposed a new paradigm of human-building interaction, which is expected to play a promising role in the development of human-centered intelligent buildings.
  •  
5.
  • Sjögren, Anna-Karin, 1980, et al. (author)
  • GGTase-I deficiency reduces tumor formation and improves survival in mice with K-RAS-induced lung cancer
  • 2007
  • In: J Clin Invest. - 0021-9738. ; 117:5, s. 1294-304
  • Journal article (peer-reviewed)abstract
    • Protein geranylgeranyltransferase type I (GGTase-I) is responsible for the posttranslational lipidation of CAAX proteins such as RHOA, RAC1, and cell division cycle 42 (CDC42). Inhibition of GGTase-I has been suggested as a strategy to treat cancer and a host of other diseases. Although several GGTase-I inhibitors (GGTIs) have been synthesized, they have very different properties, and the effects of GGTIs and GGTase-I deficiency are unclear. One concern is that inhibiting GGTase-I might lead to severe toxicity. In this study, we determined the effects of GGTase-I deficiency on cell viability and K-RAS-induced cancer development in mice. Inactivating the gene for the critical beta subunit of GGTase-I eliminated GGTase-I activity, disrupted the actin cytoskeleton, reduced cell migration, and blocked the proliferation of fibroblasts expressing oncogenic K-RAS. Moreover, the absence of GGTase-I activity reduced lung tumor formation, eliminated myeloproliferative phenotypes, and increased survival of mice in which expression of oncogenic K-RAS was switched on in lung cells and myeloid cells. Interestingly, several cell types remained viable in the absence of GGTase-I, and myelopoiesis appeared to function normally. These findings suggest that inhibiting GGTase-I may be a useful strategy to treat K-RAS-induced malignancies.
  •  
6.
  • Wahlström, Annika, 1975, et al. (author)
  • Inactivating Icmt ameliorates K-RAS-induced myeloproliferative disease.
  • 2008
  • In: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 112:4, s. 1357-65
  • Journal article (peer-reviewed)abstract
    • Hyperactive signaling through the RAS proteins is involved in the pathogenesis of many forms of cancer. The RAS proteins and many other intracellular signaling proteins are either farnesylated or geranylgeranylated at a carboxyl-terminal cysteine. That isoprenylcysteine is then carboxyl methylated by isoprenylcysteine carboxyl methyltransferase (ICMT). We previously showed that inactivation of Icmt mislocalizes the RAS proteins away from the plasma membrane and blocks RAS transformation of mouse fibroblasts, suggesting that ICMT could be a therapeutic target. However, nothing is known about the impact of inhibiting ICMT on the development of malignancies in vivo. In the current study, we tested the hypothesis that inactivation of Icmt would inhibit the development or progression of a K-RAS-induced myeloproliferative disease in mice. We found that inactivating Icmt reduced splenomegaly, the number of immature myeloid cells in peripheral blood, and tissue infiltration by myeloid cells. Moreover, in the absence of Icmt, the ability of K-RAS-expressing hematopoietic cells to form colonies in methylcellulose without exogenous growth factors was reduced dramatically. Finally, inactivating Icmt reduced lung tumor development and myeloproliferation phenotypes in a mouse model of K-RAS-induced cancer. We conclude that inactivation of Icmt ameliorates phenotypes of K-RAS-induced malignancies in vivo.
  •  
7.
  • Wahlström, Annika, 1975, et al. (author)
  • Rce1 deficiency accelerates the development of K-RAS-induced myeloproliferative disease
  • 2007
  • In: Blood. ; 109:2, s. 763-768
  • Journal article (peer-reviewed)abstract
    • The RAS proteins undergo farnesylation of a carboxyl-terminal cysteine (the "C" of the carboxyl-terminal CaaX motif). After farnesylation, the 3 amino acids downstream from the farnesyl cysteine (the -aaX of the CaaX motif) are released by RAS-converting enzyme 1 (RCE1). We previously showed that inactivation of Rce1 in mouse fibroblasts mislocalizes RAS proteins away from the plasma membrane and inhibits RAS transformation. Therefore, we hypothesized that the inactivation of Rce1 might inhibit RAS transformation in vivo. To test this hypothesis, we used Cre/loxP recombination techniques to simultaneously inactivate Rce1 and activate a latent oncogenic K-RAS allele in hematopoietic cells in mice. Normally, activation of the oncogenic K-RAS allele in hematopoietic cells leads to rapidly progressing and lethal myeloproliferative disease. Contrary to our hypothesis, the inactivation of Rce1 actually increased peripheral leukocytosis, increased the release of immature hematopoietic cells into the circulation and the infiltration of cells into liver and spleen, and caused mice to die more rapidly. Moreover, in the absence of Rce1, splenocytes and bone marrow cells expressing oncogenic K-RAS yielded more and larger colonies when grown in methylcellulose. We conclude that the inactivation of Rce1 worsens the myeloproliferative disease caused by oncogenic K-RAS.
  •  
8.
  • Cisowski, Jaroslaw, et al. (author)
  • Oncogene-induced senescence underlies the mutual exclusive nature of oncogenic KRAS and BRAF
  • 2016
  • In: Oncogene. - : Springer Science and Business Media LLC. - 0950-9232 .- 1476-5594. ; 35:10, s. 1328-1333
  • Journal article (peer-reviewed)abstract
    • KRAS and BRAF are among the most commonly mutated oncogenes in human cancer that contribute to tumorigenesis in both distinct and overlapping tissues. However, KRAS and BRAF mutations are mutually exclusive; they never occur in the same tumor cell. The reason for the mutual exclusivity is unknown, but there are several possibilities. The two mutations could be functionally redundant and not create a selective advantage to tumor cells. Alternatively, they could be deleterious for the tumor cell and induce apoptosis or senescence. To distinguish between these possibilities, we activated the expression of BRAF(V600E) and KRAS(G12D) from their endogenous promoters in mouse lungs. Although the tumor-forming ability of BRAF(V600E) was higher than KRAS(G12D), KRAS(G12D) tumors were larger and more advanced. Coactivation of BRAF(V600E) and KRAS(G12D) markedly reduced lung tumor numbers and overall tumor burden compared with activation of BRAF(V600E) alone. Moreover, several tumors expressed only one oncogene, suggesting negative selection against expression of both. Similarly, expression of both oncogenes in mouse embryonic fibroblasts essentially stopped proliferation. The expression of both oncogenes hyperactivated the MEK-ERK-cyclin D pathway but reduced proliferation by increasing the production of p15, p16 and p19 proteins encoded by the Ink4/Arf locus and thereby increased senescence-associated beta-galactosidase-positive cells. The data suggest that coexpression of BRAF(V600E) and KRAS(G12D) in early tumorigenesis leads to negative selection due to oncogene-induced senescence.
  •  
9.
  • Ibrahim, Mohamed X, et al. (author)
  • Targeting Isoprenylcysteine Methylation Ameliorates Disease in a Mouse Model of Progeria
  • 2013
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 340:6138, s. 1330-1333
  • Journal article (peer-reviewed)abstract
    • Several progeroid disorders, including Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (ZMPSTE24 deficiency), arise when a farnesylated and methylated form of prelamin A accumulates at the nuclear envelope. Here, we found that a hypomorphic allele of isoprenylcysteine carboxyl methyltransferase (ICMT) increased body weight, normalized grip strength, and prevented bone fractures and death in Zmpste24-deficient mice. The reduced ICMT activity caused prelamin A mislocalization within the nucleus and triggered prelamin A-dependent activation of AKT-mammalian target of rapamycin (mTOR) signaling, which abolished the premature senescence of Zmpste24-deficient fibroblasts. ICMT inhibition increased AKT-mTOR signaling and proliferation and delayed senescence in human HGPS fibroblasts but did not reduce the levels of misshapen nuclei in mouse and human cells. Thus, targeting ICMT might be useful for treating prelamin A-associated progeroid disorders.
  •  
10.
  • Khan, Omar M., 1980, et al. (author)
  • Geranylgeranyltransferase type I (GGTase-I) deficiency hyperactivates macrophages and induces erosive arthritis in mice.
  • 2011
  • In: The Journal of clinical investigation. - 1558-8238. ; 121:2, s. 628-39
  • Journal article (peer-reviewed)abstract
    • RHO family proteins are important for the function of inflammatory cells. They are modified with a 20-carbon geranylgeranyl lipid in a process catalyzed by protein geranylgeranyltransferase type I (GGTase-I). Geranylgeranylation is viewed as essential for the membrane targeting and activity of RHO proteins. Consequently, inhibiting GGTase-I to interfere with RHO protein activity has been proposed as a strategy to treat inflammatory disorders. However, here we show that mice lacking GGTase-I in macrophages develop severe joint inflammation resembling erosive rheumatoid arthritis. The disease was initiated by the GGTase-I-deficient macrophages and was transplantable and reversible in bone marrow transplantation experiments. The cells accumulated high levels of active GTP-bound RAC1, CDC42, and RHOA, and RAC1 remained associated with the plasma membrane. Moreover, GGTase-I deficiency activated p38 and NF-κB and increased the production of proinflammatory cytokines. The results challenge the view that geranylgeranylation is essential for the activity and localization of RHO family proteins and suggest that reduced geranylgeranylation in macrophages can initiate erosive arthritis.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view