SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Llopart X.) "

Search: WFRF:(Llopart X.)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Ballabriga, R., et al. (author)
  • Medipix3 : A 64 k pixel detector readout chip working in single photon counting mode with improved spectrometric performance
  • 2011
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 633:SUPPL. 1, s. S15-S18
  • Journal article (peer-reviewed)abstract
    • Medipix3 is a 256×256 channel hybrid pixel detector readout chip working in a single photon counting mode with a new inter-pixel architecture, which aims to improve the energy resolution in pixelated detectors by mitigating the effects of charge sharing between channels. Charges are summed in all 2×2 pixel clusters on the chip and a given hit is allocated locally to the pixel summing circuit with the biggest total charge on an event-by-event basis. Each pixel contains also two 12-bit binary counters with programmable depth and overflow control. The chip is configurable such that either the dimensions of each detector pixel match those of one readout pixel or detector pixels are four times greater in area than the readout pixels. In the latter case, event-by-event summing is still possible between the larger pixels. Each pixel has around 1600 transistors and the analog static power consumption is below 15 μW in the charge summing mode and 9 μW in the single pixel mode. The chip has been built in an 8-metal 0.13 μm CMOS technology. This paper describes the chip from the pixel to the periphery and first electrical results are summarized.
  •  
3.
  • Campbell, M., et al. (author)
  • Towards a new generation of pixel detector readout chips
  • 2016
  • In: Journal of Instrumentation. - 1748-0221. ; 11:1
  • Journal article (peer-reviewed)abstract
    • The Medipix3 Collaboration has broken new ground in spectroscopic X-ray imaging and in single particle detection and tracking. This paper will review briefly the performance and limitations of the present generation of pixel detector readout chips developed by the Collaboration. Through Silicon Via technology has the potential to provide a significant improvement in the tile-ability and more flexibility in the choice of readout architecture. This has been explored in the context of 3 projects with CEA-LETI using Medipix3 and Timepix3 wafers. The next generation of chips will aim to provide improved spectroscopic imaging performance at rates compatible with human CT. It will also aim to provide full spectroscopic images with unprecedented energy and spatial resolution. Some of the opportunities and challenges posed by moving to a more dense CMOS process will be discussed.
  •  
4.
  • Chmeissani, M, et al. (author)
  • First experimental tests with a CdTe photon counting pixel detector hybridized with a Medipix2 readout chip
  • 2004
  • In: IEEE Transactions on Nuclear Science. - : IEEE. - 0018-9499 .- 1558-1578. ; 51:5, s. 2379-2385
  • Journal article (peer-reviewed)abstract
    • We present preliminary tests of hybrid pixel detectors consisting of the Medipix2 readout chip bump-bonded to a 1-mm-thick CdTe pixel detector. This room temperature imaging system for single photon counting has been developed within the Medipix2 European Collaboration for various imaging applications with X-rays and gamma rays, including dental radiography, mammography, synchrotron radiation, nuclear medicine, and radiation monitoring in nuclear facilities. The Medipix2 + CdTe hybrid detector features 256 × 256 square pixels, a pitch of 55 μm, a sensitive area of 14×14 mm2. We analyzed the quality of the detector and bump-bonding and the response to nuclear radiation of the first CdTe hybrids. The CdTe pixel detectors, with Pt ohmic contacts, showed an ohmic response when negatively biased up to less than 60 V (electrons collection mode). Tests were also performed in holes collection mode, where a nonresistive behavior was observed above +15 V. We performed a series of imaging tests at low voltage bias with gamma radioactive sources and with an X-ray tube. Under uniform irradiation, we observed for all detectors the presence of numerous, stable structures in the form of small circles of about 200 μm diameter, with the central pixels showing a reduced counting efficiency with respect to the periphery (in electrons counting regime). Also long filament structures have been observed. Further investigations will reveal whether they are due to an intrinsic detector response (e.g., due to Te inclusions) or to the bump-bonding process.
  •  
5.
  • Collins, P., et al. (author)
  • The LHCb VELO upgrade
  • 2011
  • In: Nuclear Instruments and Methods in Physics Research Section A. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 636, s. S185-S193
  • Journal article (peer-reviewed)abstract
    • The LHCb experiment at the LHC plans to massively increase its data taking capabilities by running at a higher luminosity with a fully upgraded detector around 2016. This scheme is independent of (but compatible with) the plans for the SLHC upgrades. The silicon detector will be upgraded to provide a 40 MHz readout and to be able to cope with the increased radiation environment. This paper describes the options currently under consideration. A highlight of the R&D so far undertaken is a beam test during summer 2009 using the Timepix chip to track charged particles. Preliminary results are presented, including a measurement of the resolution achieved by the 55 mu m pitch pixel array of better than 9.5 mu m for perpendicular tracks and 55 mu m for angled tracks.
  •  
6.
  • Fröjdh, Erik, et al. (author)
  • Count rate linearity and spectral response of the Medipix3RX chip coupled to a 300μm silicon sensor under high flux conditions
  • 2014
  • In: Journal of Instrumentation. - 1748-0221. ; 9:4, s. Art. no. C04028-
  • Journal article (peer-reviewed)abstract
    • For clinical X-ray imaging, the detector performance under high flux conditions is very important, with typical flux rates for modern CT systems reaching 109 photons s-1 mm-2 in the direct beam. In addition, for spectral imaging a good energy resolution under these conditions is needed. This poses difficulties, since pulse pileup in the pixel electronics does not only affect the count rate, leading to a deviation from the otherwise linear behavior, but also degrades the spectral response of the detector, making k-edge subtraction and other contrast enhancement techniques less efficient. In this paper, we investigate the count rate capabilities and the energy response of the Medipix3RX chip under high flux conditions using 10 keV monochromatic photons. © CERN 2014.
  •  
7.
  • Fröjdh, Erik, et al. (author)
  • Timepix3 : first measurements and characterization of a hybrid-pixel detector working in event driven mode
  • 2015
  • In: Journal of Instrumentation. - 1748-0221. ; 10
  • Journal article (peer-reviewed)abstract
    • Timepix3 is a hybrid pixel detector readout chip. It features a data driven readout mode where the chip sends out a data packet containing pixel coordinate, time over threshold and time of arrival immediately after the hit is processed by the pixel. The maximum hit rate is 40 Mhits/cm(2)/s with a minimum time step in the arrival time measurement of 1.56 ns. The pixel matrix consist of 256 x 256 square pixels at a 55 m m pitch and the pixel front end noise is 61 e(-) RMS. In this paper we present the first radiation measurements with Timepix3 bump bonded to a 300 m m thick silicon sensor. The chip is calibrated per pixel, using internal test pulses and the calibration is verified using X-ray fluorescence. The energy resolution, threshold dispersion and gain dispersion is measured. The energy resolution in time over threshold mode under normal operation conditions is 4.07 keV FWHM at 59.5 keV. At 10.5 keV an energy resolution of 0.72 keV FWHM was achieved in photon counting mode and in time over threshold mode, by optimizing the energy response, we achieved a 1.38 keV FWHM. We also investigate the time walk and present first results on using the time information for track reconstruction.
  •  
8.
  •  
9.
  • Wong, Winnie S., et al. (author)
  • A pixel detector asic for dosimetry using time-over-threshold energy measurements
  • 2011
  • In: Radiation Measurements. - : Elsevier BV. - 1350-4487 .- 1879-0925. ; 46:12, s. 1619-1623
  • Journal article (peer-reviewed)abstract
    • In this work we present the design of a chip which provides the readout of a highly segmented diode array, in which signals induced by individual X-ray photons are processed discretely. There are several benefits to this approach, including the ability to achieve a high signal to noise ratio due to the inherently low sensor capacitance, and the suppression of background noise (e.g. dark current) using an analogue threshold. The segmentation also ensures a linear behaviour even at very high dose rates. A time over threshold (ToT1) energy measurement technique provides an immediate digital value corresponding to the energy deposited onto the diode by each individual photon. Deadtime-free operation is achieved by reading out a subset of the detector segments at a time while the rest of the detector continues to process signals. This paper describes the application-specific integrated circuit (ASIC) chip which was designed to provide pre-processing of photo-induced signals in the detector and readout of the processed digital data.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view