SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lo Piparo Elena) "

Search: WFRF:(Lo Piparo Elena)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Benfenati, E., et al. (author)
  • A large comparison of integrated SAR/QSAR models of the Ames test for mutagenicity($)
  • 2018
  • In: SAR and QSAR in environmental research (Print). - : Taylor & Francis. - 1062-936X .- 1029-046X. ; 29:8, s. 591-611
  • Journal article (peer-reviewed)abstract
    • Results from the Ames test are the first outcome considered to assess the possible mutagenicity of substances. Many QSAR models and structural alerts are available to predict this endpoint. From a regulatory point of view, the recommendation from international authorities is to consider the predictions of more than one model and to combine results in order to develop conclusions about the mutagenicity risk posed by chemicals. However, the results of those models are often conflicting, and the existing inconsistency in the predictions requires intelligent strategies to integrate them. In our study, we evaluated different strategies for combining results of models for Ames mutagenicity, starting from a set of 10 diverse individual models, each built on a dataset of around 6000 compounds. The novelty of our study is that we collected a much larger set of about 18,000 compounds and used the new data to build a family of integrated models. These integrations used probabilistic approaches, decision theory, machine learning, and voting strategies in the integration scheme. Results are discussed considering balanced or conservative perspectives, regarding the possible uses for different purposes, including screening of large collection of substances for prioritization.
  •  
2.
  • Zwickl, Craig M., et al. (author)
  • Principles and procedures for assessment of acute toxicity incorporating in silico methods
  • 2022
  • In: COMPUTATIONAL TOXICOLOGY. - : Elsevier. - 2468-1113. ; 24
  • Journal article (peer-reviewed)abstract
    • Acute toxicity in silico models are being used to support an increasing number of application areas including (1) product research and development, (2) product approval and registration as well as (3) the transport, storage and handling of chemicals. The adoption of such models is being hindered, in part, because of a lack of guidance describing how to perform and document an in silico analysis. To address this issue, a framework for an acute toxicity hazard assessment is proposed. This framework combines results from different sources including in silico methods and in vitro or in vivo experiments. In silico methods that can assist the prediction of in vivo outcomes (i.e., LD50) are analyzed concluding that predictions obtained using in silico approaches are now well-suited for reliably supporting assessment of LD50- based acute toxicity for the purpose of the Globally Harmonized System (GHS) classification. A general overview is provided of the endpoints from in vitro studies commonly evaluated for predicting acute toxicity (e.g., cytotoxicity/cytolethality as well as assays targeting specific mechanisms). The increased understanding of pathways and key triggering mechanisms underlying toxicity and the increased availability of in vitro data allow for a shift away from assessments solely based on endpoints such as LD50, to mechanism-based endpoints that can be accurately assessed in vitro or by using in silico prediction models. This paper also highlights the importance of an expert review of all available information using weight-of-evidence considerations and illustrates, using a series of diverse practical use cases, how in silico approaches support the assessment of acute toxicity.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view