SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lomax G.) "

Search: WFRF:(Lomax G.)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Isasi, R., et al. (author)
  • Disclosure and management of research findings in stem cell research and banking: policy statement
  • 2012
  • In: Regenerative Medicine. - : Future Medicine Ltd. - 1746-0751 .- 1746-076X. ; 7:3, s. 439-448
  • Journal article (peer-reviewed)abstract
    • Prompted by an increased interest of both research participants and the patient advocacy community in obtaining information about research outcomes and on the use of their biological samples; the international community has begun to debate the emergence of an ethical 'duty' to return research results to participants. Furthermore, the use of new technologies (e.g., whole-genome and -exome sequencing) has revealed both genetic data and incidental findings with possible clinical significance. These technologies together with the proliferation of biorepositories, provide a compelling rationale for governments and scientific institutions to adopt prospective policies. Given the scarcity of policies in the context of stem cell research, a discussion on the scientific, ethical and legal implications of disclosing research results for research participants is needed. We present the International Stem Forum Ethics Working Party's Policy Statement and trust that it will stimulate debate and meet the concerns of researchers and research participants alike.
  •  
4.
  • Vatnitsky, S, et al. (author)
  • Proton dosimetry intercomparison
  • 1996
  • In: Radiotherapy and Oncology. - 0167-8140 .- 1879-0887. ; 41:2, s. 169-77
  • Journal article (peer-reviewed)abstract
    • BACKGROUND AND PURPOSE: Methods for determining absorbed dose in clinical proton beams are based on dosimetry protocols provided by the AAPM and the ECHED. Both groups recommend the use of air-filled ionization chambers calibrated in terms of exposure or air kerma in a 60Co beam when a calorimeter or Faraday cup dosimeter is not available. The set of input data used in the AAPM and the ECHED protocols, especially proton stopping powers and w-value is different. In order to verify inter-institutional uniformity of proton beam calibration, the AAPM and the ECHED recommend periodic dosimetry intercomparisons. In this paper we report the results of an international proton dosimetry intercomparison which was held at Loma Linda University Medical Center. The goal of the intercomparison was two-fold: first, to estimate the consistency of absorbed dose delivered to patients among the participating facilities, and second, to evaluate the differences in absorbed dose determination due to differences in 60Co-based ionization chamber calibration protocols.MATERIALS AND METHODS: Thirteen institutions participated in an international proton dosimetry intercomparison. The measurements were performed in a 15-cm square field at a depth of 10 cm in both an unmodulated beam (nominal accelerator energy of 250 MeV) and a 6-cm modulated beam (nominal accelerator energy of 155 MeV), and also in a circular field of diameter 2.6 cm at a depth of 1.14 cm in a beam with 2.4 cm modulation (nominal accelerator energy of 100 MeV).RESULTS: The results of the intercomparison have shown that using ionization chambers with 60Co calibration factors traceable to standard laboratories, and institution-specific conversion factors and dose protocols, the absorbed dose specified to the patient would fall within 3% of the mean value. A single measurement using an ionization chamber with a proton chamber factor determined with a Faraday cup calibration differed from the mean by 8%.CONCLUSION: The adoption of a single ionization chamber dosimetry protocol and uniform conversion factors will establish agreement on proton absorbed dose to approximately 1.5%, consistent with that which has been observed in high-energy photon and electron dosimetry.
  •  
5.
  • Dobsicek Trefna, Hana, 1979, et al. (author)
  • Quality assurance guidelines for superficial hyperthermia clinical trials: I. Clinical requirements
  • 2017
  • In: International Journal of Hyperthermia. - : Informa UK Limited. - 0265-6736 .- 1464-5157. ; 33:4, s. 471-482
  • Journal article (peer-reviewed)abstract
    • Quality assurance guidelines are essential to provide uniform execution of clinical trials and treatment in the application of hyperthermia. This document provides definitions for a good hyperthermia treatment and identifies the clinical conditions where a certain hyperthermia system can or cannot adequately heat the tumour volume. It also provides brief description of the characteristics and performance of the current electromagnetic (radiative and capacitive), ultrasound and infra-red heating techniques. This information helps to select the appropriate heating technique for the specific tumour location and size, and appropriate settings of the water bolus and thermometry. Finally, requirements of staff training and documentation are provided. The guidelines in this document focus on the clinical application and are complemented with a second, more technical quality assurance document providing instructions and procedure to determine essential parameters that describe heating properties of the applicator for superficial hyperthermia. Both sets of guidelines were developed by the ESHO Technical Committee with participation of senior STM members and members of the Atzelsberg Circle.
  •  
6.
  • Dobsicek Trefna, Hana, 1979, et al. (author)
  • Quality assurance guidelines for superficial hyperthermia clinical trials: II. Technical requirements for heating devices
  • 2017
  • In: Strahlentherapie und Onkologie. - : Springer Science and Business Media LLC. - 1439-099X .- 0179-7158. ; 193:5, s. 351-366
  • Research review (peer-reviewed)abstract
    • Quality assurance (QA) guidelines are essential to provide uniform execution of clinical trials with uniform quality hyperthermia treatments. This document outlines the requirements for appropriate QA of all current superficial heating equipment including electromagnetic (radiative and capacitive), ultrasound, and infrared heating techniques. Detailed instructions are provided how to characterize and document the performance of these hyperthermia applicators in order to apply reproducible hyperthermia treatments of uniform high quality. Earlier documents used specific absorption rate (SAR) to define and characterize applicator performance. In these QA guidelines, temperature rise is the leading parameter for characterization of applicator performance. The intention of this approach is that characterization can be achieved with affordable equipment and easy-to-implement procedures. These characteristics are essential to establish for each individual applicator the specific maximum size and depth of tumors that can be heated adequately. The guidelines in this document are supplemented with a second set of guidelines focusing on the clinical application. Both sets of guidelines were developed by the European Society for Hyperthermic Oncology (ESHO) Technical Committee with participation of senior Society of Thermal Medicine (STM) members and members of the Atzelsberg Circle.
  •  
7.
  • Huybrighs, H. L. F., et al. (author)
  • An Active Plume Eruption on Europa During Galileo Flyby E26 as Indicated by Energetic Proton Depletions
  • 2020
  • In: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 47:10
  • Journal article (peer-reviewed)abstract
    • Strong depletions of energetic protons (115-244 keV) were observed during Galileo flyby E26 of Europa. We simulate the flux of energetic protons using a Monte Carlo particle backtracing code and show that energetic proton depletions during E26 are reproduced by taking into account the perturbations of the electromagnetic fields calculated by magnetohydrodynamic (MHD) simulations and charge exchange with a global atmosphere and plume. A depletion feature occurring shortly after closest approach is driven by plume associated charge exchange, or a combination with plume associated field perturbations. We therefore conclude, with a new method and independent data set, that Galileo could have encountered a plume during E26.
  •  
8.
  • La Tessa, C., et al. (author)
  • Out-of-field dose studies with an anthropomorphic phantom : Comparison of X-rays and particle therapy treatments
  • 2012
  • In: Radiotherapy and Oncology. - : Elsevier BV. - 0167-8140 .- 1879-0887. ; 105:1, s. 133-138
  • Journal article (peer-reviewed)abstract
    • Background and purpose: Characterization of the out-of-field dose profile following irradiation of the target with a 3D treatment plan delivered with modern techniques. Methods: An anthropomorphic RANDO phantom was irradiated with a treatment plan designed for a simulated 5×2×5cm 3 tumor volume located in the center of the head. The experiment was repeated with all most common radiation treatment types (photons, protons and carbon ions) and delivery techniques (Intensity Modulated Radiation Therapy, passive modulation and spot scanning). The measurements were performed with active diamond detector and passive thermoluminescence (TLD) detectors to investigate the out-of-field dose both inside and outside the phantom. Results: The highest out-of-field dose values both on the surface and inside the phantom were measured during the treatment with 25 MV photons. In the proximity of the Planned Target Volume (PTV), the lowest lateral dose profile was observed for passively modulated protons mainly because of the presence of the collimator in combination with the chosen volume shape. In the far out-of-field region (above 100 mm from the PTV), passively modulated ions were characterized by a less pronounced dose fall-off in comparison with scanned beams. Overall, the treatment with scanned carbon ions delivered the lowest dose outside the target volume. Conclusions: For the selected PTV, the use of the collimator in proton therapy drastically reduced the dose deposited by ions or photons nearby the tumor. Scanning modulation represents the optimal technique for achieving the highest dose reduction far-out-of-field.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view