SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lotti Marina) "

Sökning: WFRF:(Lotti Marina)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adamo, Giusy M, et al. (författare)
  • Amplification of the CUP1 gene is associated with evolution of copper tolerance in Saccharomyces cerevisiae.
  • 2012
  • Ingår i: Microbiology (Reading, England). - : Microbiology Society. - 1465-2080 .- 1350-0872. ; 158:Pt 9, s. 2325-35
  • Tidskriftsartikel (refereegranskat)abstract
    • In living organisms, copper (Cu) contributes to essential functions but at high concentrations it may elicit toxic effects. Cu-tolerant yeast strains are of relevance for both biotechnological applications and studying physiological and molecular mechanisms involved in stress resistance. One way to obtain tolerant strains is to exploit experimental methods that rely on the principles of natural evolution (evolutionary engineering) and allow for the development of complex phenotypic traits. However, in most cases, the molecular and physiological basis of the phenotypic changes produced have not yet been unravelled. We investigated the determinants of Cu resistance in a Saccharomyces cerevisiae strain that was evolved to tolerate up to 2.5 g CuSO(4) l(-1) in the culture medium. We found that the content of intracellular Cu and the expression levels of several genes encoding proteins involved in Cu metabolism and oxidative stress response were similar in the Cu-tolerant (evolved) and the Cu-sensitive (non-evolved) strain. The major difference detected in the two strains was the copy number of the gene CUP1, which encodes a metallothionein. In evolved cells, a sevenfold amplification of CUP1 was observed, accounting for its strongly and steadily increased expression. Our results implicate CUP1 in protection of the evolved S. cerevisiae cells against Cu toxicity. In these cells, robustness towards Cu is stably inheritable and can be reproducibly selected by controlling environmental conditions. This finding corroborates the effectiveness of laboratory evolution of whole cells as a tool to develop microbial strains for biotechnological applications.
  •  
2.
  • Brocca, Stefania, et al. (författare)
  • Mutants provide evidence of the importance of glycosydic chains in the activation of lipase 1 from Candida rugosa
  • 2000
  • Ingår i: Protein Science. - : Wiley. - 0961-8368 .- 1469-896X. ; 9:5, s. 985-990
  • Tidskriftsartikel (refereegranskat)abstract
    • Sequence analysis of Candida rugosa lipase 1 (LIP1) predicts the presence of three N-linked glycosylation sites at asparagine 291, 314, 351. To investigate the relevance of sugar chains in the activation and stabilization of LIP1, we directed site mutagenesis to replace the above mentioned asparagine with glutamine residues. Comparison of the activity of mutants with that of the wild-type (wt) lipase indicates that both 314 and 351 Asn to Gln substitutions influence, although at a different extent, the enzyme activity both in hydrolysis and esterification reactions, but they do not alter the enzyme water activity profiles in organic solvents or temperature stability. Introduction of Gln to replace Asn35 is likely to disrupt a stabilizing interaction between the sugar chain and residues of the inner side of the lid in the enzyme active conformation. The effect of deglycosylation at position 314 is more difficult to explain and might suggest a more general role of the sugar moiety for the structural stability of lipase 1. Conversely, Asn291Gln substitution does not affect' the lipolytic or the esterase activity of the mutant that behaves essentially as the wt enzyme. This observation supports the hypothesis that changes in activity of Asn314Gln and Asn351Gln mutants are specifically due to deglycosylation.
  •  
3.
  • Wittrup Larsen, Marianne, 1971- (författare)
  • Expression of a lipase in prokaryote and eukaryote host systems allowing engineering
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Pseudozyma (Candida) antarctica lipase B (PalB) was expressed in Escherichia coli facilitating protein engineering. The lack of glycosylation was evaluated for a deeper understanding of the difficulties in expressing PalB in E. coli. Different systems were tested: periplasmic expression in Rosetta (DE3), cytosolic expression in Rosetta-gami 2(DE3), Origami 2(DE3), and coexpression of groES and groEL. Periplasmic expression resulted 5.2 mg/L active PalB at 16 °C in shake flasks. This expression level was improved by using the EnBase technology, enabling fed-batch cultivation in 24-deep well scale. The feed rate was titrated with the addition of α-amylase, which slowly releases glucose as energy source. Different media were evaluated where the EnBase mineral salt medium resulted in 7.0 mg/L of active PalB.Protein secreted directly into the media was obtained using the constitutive glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter for screening and production of PalB in P. pastoris. A protease sensitive fusion protein CBM-PalB (cellulose-binding module) was used as a model system. When optimised, the expression system resulted in 46 mg/L lipase in 72 hours in shake flask, 37 mg/L lipase in 28 hours in 96-deep-well plate format, and 2.9 g PalB per 10 L bioreactor cultivation.The E. coli expression system was used to express a small focused library of PalB variants, designed to prevent water from entering the active site through a hypothesised tunnel. Screening of the library was performed with a developed assay, allowing for simultaneous detection of both transacylation and hydrolytic activity. From the library a mutant S47L, in which the inner part of the tunnel was blocked, was found to catalyse transacylation of vinyl butyrate in 20 mM butanol 14 times faster than hydrolysis. Water tunnels, assisting water in reaching the active sites, were furthermore found by molecular modelling in many hydrolases. Molecular modelling showed a specific water tunnel in PalB. This was supported by experimental data, where the double mutant Q46A S47L catalysed transacylation faster than hydrolysis compared to the wild type PalB.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy