SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Luehr Hermann) "

Search: WFRF:(Luehr Hermann)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Park, Jaeheung, et al. (author)
  • A dayside plasma depletion observed at midlatitudes during quiet geomagnetic conditions
  • 2015
  • In: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 42:4, s. 967-974
  • Journal article (peer-reviewed)abstract
    • In this study we investigate a dayside, midlatitude plasma depletion (DMLPD) encountered on 22 May 2014 by the Swarm and GRACE satellites, as well as ground-based instruments. The DMLPD was observed near Puerto Rico by Swarm near 10 LT under quiet geomagnetic conditions at altitudes of 475-520 km and magnetic latitudes of similar to 25 degrees-30 degrees. The DMLPD was also revealed in total electron content observations by the Saint Croix station and by the GRACE satellites (430 km) near 16 LT and near the same geographic location. The unique Swarm constellation enables the horizontal tilt of the DMLPD to be measured (35 degrees clockwise from the geomagnetic east-west direction). Ground-based airglow images at Arecibo showed no evidence for plasma density depletions during the night prior to this dayside event. The C/NOFS equatorial satellite showed evidence for very modest plasma density depletions that had rotated into the morningside from nightside. However, the equatorial depletions do not appear related to the DMLPD, for which the magnetic apex height is about 2500 km. The origins of the DMLPD are unknown, but may be related to gravity waves.
  •  
2.
  • Park, Jaeheung, et al. (author)
  • Westward tilt of low-latitude plasma blobs as observed by the Swarm constellation
  • 2015
  • In: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:4, s. 3187-3197
  • Journal article (peer-reviewed)abstract
    • In this study we investigate the three-dimensional structure of low-latitude plasma blobs using multi-instrument and multisatellite observations of the Swarm constellation. During the early commissioning phase the Swarm satellites were flying at the same altitude with zonal separation of about 0.5 degrees in geographic longitude. Electron density data from the three satellites constrain the blob morphology projected onto the horizontal plane. Magnetic field deflections around blobs, which originate from field-aligned currents near the irregularity boundaries, constrain the blob structure projected onto the plane perpendicular to the ambient magnetic field. As the two constraints are given for two noncoplanar surfaces, we can get information on the three-dimensional structure of blobs. Combined observation results suggest that blobs are contained within tilted shells of geomagnetic flux tubes, which are similar to the shell structure of equatorial plasma bubbles suggested by previous studies.
  •  
3.
  • Xiong, Chao, et al. (author)
  • Solar Flux Influence on the In-Situ Plasma Density at Topside Ionosphere Measured by Swarm Satellites
  • 2022
  • In: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 127:5
  • Journal article (peer-reviewed)abstract
    • In this study, we perform the first comprehensive comparison of ion density (Ni) in the topside ionosphere measured by the Langmuir probe (LP) and faceplate (FP) of the thermal ion imager on board Swarm satellites. Our results show a systematic difference between the LP and FP derived Ni values, and the systematic difference shows prominent dependences on solar flux, local time, and season. Although both Ni datasets show generally good linear regression with electron density (Ne) measurements from the incoherent scatter radar (ISR) located at Jicamarca, the Ni derived from LP shows an additional dependence on the solar flux, while such a dependence cannot be seen in the FP-derived Ni. We suggest that the solar flux dependence of LP-derived Ni is related to the ion compositions change at Swarm altitude, which has not been properly accounted for in the LP processing algorithm. More light ions (e.g., H+), diffusing down from the plasmasphere to the Swarm altitude, seem to cause the overestimation of Ni from LP during low solar activity. A linear relation between the Swarm LP-derived Ni and ISR Ne is derived, and such a function is recommended to be implemented into further updates of the Swarm LP plasma density data.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view