SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Mackey Abigail) "

Search: WFRF:(Mackey Abigail)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Folkesson, Mattias, 1972-, et al. (author)
  • The expression of heat shock protein in human skeletal muscle : effects of muscle fibre phenotype and training background
  • 2013
  • In: Acta Physiologica. - : Wiley-Blackwell. - 1748-1708 .- 1748-1716. ; 209:1, s. 26-33
  • Journal article (peer-reviewed)abstract
    • Aim: Exercise-induced adaptations of skeletal muscle are related to training mode and can be muscle fibre type specific. This study aimed to investigate heat shock protein expression in type I and type II muscle fibres in resting skeletal muscle of subjects with different training backgrounds.Methods: Three groups of subjects were included: healthy active not engaged in any training programme (ACT, n = 12), resistance trained (RES, n = 6) and endurance trained (END, n = 8). Biopsies were obtained from vastus lateralis, and immunohistochemistry was performed using monoclonal antibodies against myosin heavy chain I and IIA, αB-crystallin, HSP27, HSP60 and HSP70.Results: In ACT and RES, but not in END, a fibre type–specific expression with higher staining intensity in type I than type II fibres was seen for αB-crystallin. The opposite (II > I) was found for HSP27 in subjects from ACT (6 of 12 subjects) and RES (3 of 6), whereas all subjects from END displayed uniform staining. HSP60 showed no fibre-specific expression. HSP70 displayed a fibre-specific expression pattern (I > II) in ACT (4 of 12), but not in END or RES.Conclusion: This study shows that the level of expression of the different HSPs in human skeletal muscle is influenced by muscle fibre phenotype. The fibre type–specific expression of HSP70 is influenced by resistance and endurance training, whereas those of αB-crystallin and HSP27 is influenced only by endurance training, suggesting the existence of a training-modality-specific action on the adaptive processes including heat shock proteins in human skeletal muscle.
  •  
2.
  • Kadi, Fawzi, et al. (author)
  • The effects of regular strength training on telomere length in human skeletal muscle
  • 2008
  • In: Medicine & Science in Sports & Exercise. - : Lippincott Williams & Wilkins. - 0195-9131 .- 1530-0315. ; 40:1, s. 82-87
  • Journal article (peer-reviewed)abstract
    • PURPOSE: The length of DNA telomeres is an important parameter of the proliferative potential of tissues. A recent study has reported abnormally short telomeres in skeletal muscle of athletes with exercise-associated fatigue. This important report raises the question of whether long-term practice of sports might have deleterious effects on muscle telomeres. Therefore, we aimed to compare telomere length of a group of power lifters (PL; N = 7) who trained for 8 +/- 3 yr against that of a group of healthy, active subjects (C; N = 7) with no history of strength training. METHODS: Muscle biopsies were taken from the vastus lateralis, and the mean and minimum telomeric restriction fragments (TRF) (telomere length) were determined, using the Southern blot protocol previously used for the analysis of skeletal muscle. RESULTS: There was no abnormal shortening of telomeres in PL. On the contrary, the mean (P = 0.07) and the minimum (P = 0.09) TRF lengths in PL tended to be higher than in C. In PL, the minimum TRF length was inversely correlated to the individual records in squat (r = -0.86; P = 0.01) and deadlift (r = -0.88; P = 0.01). CONCLUSION: These results show for the first time that long-term training is not associated with an abnormal shortening of skeletal muscle telomere length. Although the minimum telomere length in PL remains within normal physiological ranges, a heavier load put on the muscles means a shorter minimum TRF length in skeletal muscle.
  •  
3.
  • Mackey, Abigail L., et al. (author)
  • Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication
  • 2016
  • In: The FASEB Journal. - Bethesda, USA : Federation of American Societies for Experimental Biology. - 0892-6638 .- 1530-6860. ; 30:6, s. 2266-2281
  • Journal article (peer-reviewed)abstract
    • With this study we investigated the role of nonsteroidal anti-inflammatory drugs (NSAIDs) in human skeletal muscle regeneration. Young men ingested NSAID [1200 mg/d ibuprofen (IBU)] or placebo (PLA) daily for 2 wk before and 4 wk after an electrical stimulation-induced injury to the leg extensor muscles of one leg. Muscle biopsies were collected from the vastus lateralis muscles before and after stimulation (2.5 h and 2, 7, and 30 d) and were assessed for satellite cells and regeneration by immunohistochemistry and real-time RT-PCR, and we also measured telomere length. After injury, and compared with PLA, IBU was found to augment the proportion of ActiveNotch1(+) satellite cells at 2 d [IBU, 29 ± 3% vs. PLA, 19 ± 2% (means ± sem)], satellite cell content at 7 d [IBU, 0.16 ± 0.01 vs. PLA, 0.12 ± 0.01 (Pax7(+) cells/fiber)], and to expedite muscle repair at 30 d. The PLA group displayed a greater proportion of embryonic myosin(+) fibers and a residual ∼2-fold increase in mRNA levels of matrix proteins (all P < 0.05). Endomysial collagen was also elevated with PLA at 30 d. Minimum telomere length shortening was not observed. In conclusion, ingestion of NSAID has a potentiating effect on Notch activation of satellite cells and muscle remodeling during large-scale regeneration of injured human skeletal muscle.-Mackey, A. L., Rasmussen, L. K., Kadi, F., Schjerling, P., Helmark, I. C., Ponsot, E., Aagaard, P., Durigan, J. L. Q., Kjaer, M. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication.
  •  
4.
  • Mackey, Abigail L., et al. (author)
  • The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell responses in humans
  • 2007
  • In: Journal of applied physiology. - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 103:2, s. 425-431
  • Journal article (peer-reviewed)abstract
    • The consumption of nonsteroidal anti-inflammatory drugs (NSAIDs) is widespread among athletes when faced with muscle soreness or injury, but the effects of NSAIDs on satellite cell activity in humans are unknown. To investigate this, 14 healthy male endurance athletes (mean peak oxygen consumption 62 ml x kg(-1) x min(-1)) volunteered for the study, which involved running 36 km. They were divided into two groups and received either 100 mg indomethacin per day or placebo. Muscle biopsies collected before the run and on days 1, 3, and 8 afterward were analyzed for satellite cells by immunohistochemistry with the aid of neural cell adhesion molecule (NCAM) and fetal antigen-1 (FA1) antibodies. Muscle biopsies were also collected from untrained individuals for comparison. Compared with preexercise levels, a 27% increase in the number of NCAM+ cells was observed on day 8 postexercise in the placebo group (P < 0.05), while levels remained similar at all time points in the NSAID group. No change was seen in the proportion of FA1+ cells, although lower levels were found in the muscle of endurance-trained athletes compared with untrained individuals (P < 0.05). These results suggest that ingestion of anti-inflammatory drugs attenuates the exercise-induced increase in satellite cell number, supporting the role of the cyclooxygenase pathway in satellite cell activity.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view