SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Maeaettaenen A.) "

Search: WFRF:(Maeaettaenen A.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gusev, A, et al. (author)
  • Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation
  • 2016
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7, s. 10979-
  • Journal article (peer-reviewed)abstract
    • Although genome-wide association studies have identified over 100 risk loci that explain ∼33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic architecture from common variation underlying PrCa risk. Our findings showcase the power of integrating functional annotation with genetic data to understand the genetic basis of PrCa.
  •  
2.
  • Listowski, C., et al. (author)
  • Near-pure vapor condensation in the Martian atmosphere : CO2 ice crystal growth
  • 2013
  • In: Journal of geophysical research - planets. - : American Geophysical Union (AGU). - 2169-9097. ; 118:10, s. 2153-2171
  • Journal article (peer-reviewed)abstract
    • A new approach is presented to model the condensational growth of carbon dioxide (CO2) ice crystals on Mars. These condensates form in very particular conditions. First, approximate to 95% of the atmosphere is composed of CO2 so that near-pure vapor condensation takes place. Second, the atmosphere is rarefied, having dramatic consequences on the crystal growth. Indeed, the subsequently reduced efficiency of heat transport helps maintain a high temperature difference between the crystal surface and the environment, inhibiting the growth. Besides, the Stefan flow which would have been expected to increase the growth rate of the crystal, because of the near-pure vapor condensation, is negligible. We show that the heritage of the convenient and explicit linearized crystal growth rate formula used for Earth clouds, initially derived for a trace gas, has to be reconsidered in the case of near-pure vapor condensation for high saturation ratios that appear to be common in the Martian mesosphere. Nevertheless, by comparing our approach with a more complex condensation model, valid for all atmospheric conditions and all vapor abundances, we show that a very simple set of equations can still be used to efficiently reproduce the CO2 ice crystal growth rate. Our model, referred to as the CLASSIC model here, provides similar crystal growth rates than the traditionally used linearized growth rate models at low supersaturations but predicts lower crystal growth rates at high supersaturations. It can thus be used to model the condensational growth of CO2 ice crystals in the mesosphere where high supersaturations are observed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view