SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Magrini F) "

Search: WFRF:(Magrini F)

  • Result 1-10 of 62
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Marconi, A., et al. (author)
  • ANDES, the high resolution spectrograph for the ELT : science case, baseline design and path to construction
  • 2022
  • In: GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY IX. - : SPIE - International Society for Optical Engineering. - 9781510653504 - 9781510653498
  • Conference paper (peer-reviewed)abstract
    • The first generation of ELT instruments includes an optical-infrared high resolution spectrograph, indicated as ELT-HIRES and recently christened ANDES (ArmazoNes high Dispersion Echelle Spectrograph). ANDES consists of three fibre-fed spectrographs (UBV, RIZ, YJH) providing a spectral resolution of similar to 100,000 with a minimum simultaneous wavelength coverage of 0.4-1.8 mu m with the goal of extending it to 0.35-2.4 mu m with the addition of a K band spectrograph. It operates both in seeing- and diffraction-limited conditions and the fibre-feeding allows several, interchangeable observing modes including a single conjugated adaptive optics module and a small diffraction-limited integral field unit in the NIR. Its modularity will ensure that ANDES can be placed entirely on the ELT Nasmyth platform, if enough mass and volume is available, or partly in the Coude room. ANDES has a wide range of groundbreaking science cases spanning nearly all areas of research in astrophysics and even fundamental physics. Among the top science cases there are the detection of biosignatures from exoplanet atmospheres, finding the fingerprints of the first generation of stars, tests on the stability of Nature's fundamental couplings, and the direct detection of the cosmic acceleration. The ANDES project is carried forward by a large international consortium, composed of 35 Institutes from 13 countries, forming a team of more than 200 scientists and engineers which represent the majority of the scientific and technical expertise in the field among ESO member states.
  •  
2.
  • Gilmore, G., et al. (author)
  • The Gaia-ESO Public Spectroscopic Survey : Motivation, implementation, GIRAFFE data processing, analysis, and final data products star
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Journal article (peer-reviewed)abstract
    • Context. The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100 000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for the homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. Aims. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper introduces the survey results. Methods. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus, all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. Results. The Gaia-ESO Survey obtained 202 000 spectra of 115 000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. Conclusions. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022. A companion article reviews the survey implementation, scientific highlights, the open cluster survey, and data products.
  •  
3.
  • Randich, S., et al. (author)
  • The Gaia-ESO Public Spectroscopic Survey : Implementation, data products, open cluster survey, science, and legacy
  • 2022
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 666
  • Journal article (peer-reviewed)abstract
    • Context. In the last 15 years different ground-based spectroscopic surveys have been started (and completed) with the general aim of delivering stellar parameters and elemental abundances for large samples of Galactic stars, complementing Gaia astrometry. Among those surveys, the Gaia-ESO Public Spectroscopic Survey, the only one performed on a 8m class telescope, was designed to target 100 000 stars using FLAMES on the ESO VLT (both Giraffe and UVES spectrographs), covering all the Milky Way populations, with a special focus on open star clusters. Aims. This article provides an overview of the survey implementation (observations, data quality, analysis and its success, data products, and releases), of the open cluster survey, of the science results and potential, and of the survey legacy. A companion article reviews the overall survey motivation, strategy, Giraffe pipeline data reduction, organisation, and workflow. Methods. We made use of the information recorded and archived in the observing blocks; during the observing runs; in a number of relevant documents; in the spectra and master catalogue of spectra; in the parameters delivered by the analysis nodes and the working groups; in the final catalogue; and in the science papers. Based on these sources, we critically analyse and discuss the output and products of the Survey, including science highlights. We also determined the average metallicities of the open clusters observed as science targets and of a sample of clusters whose spectra were retrieved from the ESO archive. Results. The Gaia-ESO Survey has determined homogeneous good-quality radial velocities and stellar parameters for a large fraction of its more than 110 000 unique target stars. Elemental abundances were derived for up to 31 elements for targets observed with UVES. Lithium abundances are delivered for about 1/3 of the sample. The analysis and homogenisation strategies have proven to be successful; several science topics have been addressed by the Gaia-ESO consortium and the community, with many highlight results achieved. Conclusions. The final catalogue will be released through the ESO archive in the first half of 2022, including the complete set of advanced data products. In addition to these results, the Gaia-ESO Survey will leave a very important legacy, for several aspects and for many years to come.
  •  
4.
  • Blomme, R., et al. (author)
  • The Gaia-ESO Survey : The analysis of the hot-star spectra
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 661
  • Journal article (peer-reviewed)abstract
    • Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey that has collected, over a period of six years, spectra of similar to 10(5) stars. This survey provides not only the reduced spectra, but also the stellar parameters and abundances resulting from the analysis of the spectra.Aims. The GES dataflow is organised in 19 working groups. Working group 13 (WG13) is responsible for the spectral analysis of the hottest stars (O, B, and A type, with a formal cutoff of T-eff > 7000 K) that were observed as part of GES. We present the procedures and techniques that have been applied to the reduced spectra in order to determine the stellar parameters and abundances of these stars.Methods. The procedure used was similar to that of other working groups in GES. A number of groups (called Nodes) each independently analyse the spectra via state-of-the-art techniques and codes. Specific for the analysis in WG13 was the large temperature range covered (T-eff approximate to 7000-50 000 K), requiring the use of different analysis codes. Most Nodes could therefore only handle part of the data. Quality checks were applied to the results of these Nodes by comparing them to benchmark stars, and by comparing them to one another. For each star the Node values were then homogenised into a single result: the recommended parameters and abundances.Results. Eight Nodes each analysed part of the data. In total 17 693 spectra of 6462 stars were analysed, most of them in 37 open star clusters. The homogenisation led to stellar parameters for 5584 stars. Abundances were determined for a more limited number of stars. The elements studied are He, C, N, O, Ne, Mg, Al, Si, and Sc. Abundances for at least one of these elements were determined for 292 stars. Conclusions. The hot-star data analysed here, as well as the GES data in general, will be of considerable use in future studies of stellar evolution and open clusters.
  •  
5.
  • da Silva, R., et al. (author)
  • Oxygen, sulfur, and iron radial abundance gradients of classical Cepheids across the Galactic thin disk
  • 2023
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 678, s. A195-A195
  • Journal article (peer-reviewed)abstract
    • Context. Classical Cepheids (CCs) are solid distance indicators and tracers of young stellar populations. Dating back to the beginning of the 20th century, they have been safely adopted to trace the rotation, kinematics, and chemical enrichment history of the Galactic thin disk.Aims. The main aim of this investigation is to provide iron, oxygen, and sulfur abundances for the largest and most homogeneous sample of Galactic CCs analyzed so far (1118 spectra of 356 objects). The current sample, containing 70 CCs for which spectroscopic metal abundances are provided for the first time, covers a wide range in galactocentric distances, pulsation modes, and pulsation periods.Methods. Optical high-resolution spectra with a high signal-to-noise ratio that were collected with different spectrographs were adopted to provide homogeneous estimates of the atmospheric parameters (effective temperature, surface gravity, and microturbulent velocity) that are required to determine the abundance. Individual distances were based either on trigonometric parallaxes by the Gaia Data Release 3 (Gaia DR3) or on distances based on near-infrared period-luminosity relations.Results. We found that iron and α-element radial gradients based on CCs display a well-defined change in the slope for galactocentric distances larger than ~12 kpc. We also found that logarithmic regressions account for the variation in [X/H] abundances from the inner to the outer disk. Radial gradients for the same elements, but based on open clusters covering a wide range in cluster ages, display similar trends. This means that the flattening in the outer disk is an intrinsic feature of the radial gradients because it is independent of age. Empirical evidence indicates that the S radial gradient is steeper than the Fe radial gradient. The difference in the slope is a factor of two in the linear fit (−0.081 vs. −0.041 dex kpc−1) and changes from −1.62 to −0.91 in the logarithmic distance. Moreover, we found that S (explosive nucleosynthesis) is underabundant on average when compared with O (hydrostatic nucleosynthesis). The difference becomes clearer in the metal-poor regime and for the [O/Fe] and [S/Fe] abundance ratios. We performed a detailed comparison with Galactic chemical evolution models and found that a constant star formation efficiency for galactocentric distances larger than 12 kpc accounts for the flattening observed in both iron and α-elements. To further constrain the impact of the predicted S yields for massive stars on radial gradients, we adopted a toy model and found that the flattening in the outermost regions requires a decrease of a factor of four in the current S predictions.Conclusions. CCs are solid beacons for tracing the recent chemical enrichment of young stellar populations. Sulfur photospheric abundances, when compared with other α-elements, have the key advantage of being a volatile element. Therefore, stellar S abundances can be directly compared with nebular sulfur abundances in external galaxies.
  •  
6.
  • Duffau, S., et al. (author)
  • The Gaia-ESO Survey : Galactic evolution of sulphur and zinc
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 604
  • Journal article (peer-reviewed)abstract
    • Context. Due to their volatile nature, when sulphur and zinc are observed in external galaxies, their determined abundances represent the gas-phase abundances in the interstellar medium. This implies that they can be used as tracers of the chemical enrichment of matter in the Universe at high redshift. Comparable observations in stars are more difficult and, until recently, plagued by small number statistics. Aims. We wish to exploit the Gaia-ESO Survey (GES) data to study the behaviour of sulphur and zinc abundances of a large number of Galactic stars, in a homogeneous way. Methods. By using the UVES spectra of the GES sample, we are able to assemble a sample of 1301 Galactic stars, including stars in open and globular clusters in which both sulphur and zinc were measured. Results. We confirm the results from the literature that sulphur behaves as an α-element. We find a large scatter in [Zn/Fe] ratios among giant stars around solar metallicity. The lower ratios are observed in giant stars at Galactocentric distances less than 7.5 kpc. No such effect is observed among dwarf stars, since they do not extend to that radius. Conclusions. Given the sample selection, giants and dwarfs are observed at different Galactic locations, and it is plausible, and compatible with simple calculations, that Zn-poor giants trace a younger population more polluted by SN Ia yields. It is necessary to extend observations in order to observe both giants and dwarfs at the same Galactic location. Further theoretical work on the evolution of zinc is also necessary.
  •  
7.
  • Romano, D., et al. (author)
  • The Gaia-ESO Survey : Galactic evolution of lithium from iDR6
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 653
  • Journal article (peer-reviewed)abstract
    • Context. After more than 50 years, astronomical research still struggles to reconstruct the history of lithium enrichment in the Galaxy and to establish the relative importance of the various 7Li sources in enriching the interstellar medium (ISM) with this fragile element.Aims. To better trace the evolution of lithium in the Milky Way discs, we exploit the unique characteristics of a sample of open clusters (OCs) and field stars for which high-precision 7Li abundances and stellar parameters are homogeneously derived by the Gaia-ESO Survey (GES).Methods. We derive possibly un-depleted 7Li abundances for 26 OCs and star forming regions with ages from young (∼3 Myr) to old (∼4.5 Gyr), spanning a large range of galactocentric distances, 5 < RGC/kpc < 15, which allows us to reconstruct the local late Galactic evolution of lithium as well as its current abundance gradient along the disc. Field stars are added to look further back in time and to constrain 7Li evolution in other Galactic components. The data are then compared to theoretical tracks from chemical evolution models that implement different 7Li forges.Results. Thanks to the homogeneity of the GES analysis, we can combine the maximum average 7Li abundances derived for the clusters with 7Li measurements in field stars. We find that the upper envelope of the 7Li abundances measured in field stars of nearly solar metallicities (−0.3 < [Fe/H]/dex < +0.3) traces very well the level of lithium enrichment attained by the ISM as inferred from observations of cluster stars in the same metallicity range. We confirm previous findings that the abundance of 7Li in the solar neighbourhood does not decrease at super-solar metallicity. The comparison of the data with the chemical evolution model predictions favours a scenario in which the majority of the 7Li abundance in meteorites comes from novae. Current data also seem to suggest that the nova rate flattens out at later times. This requirement might have implications for the masses of the white dwarf nova progenitors and deserves further investigation. Neutrino-induced reactions taking place in core-collapse supernovae also produce some fresh lithium. This likely makes a negligible contribution to the meteoritic abundance, but could be responsible for a mild increase in the 7Li abundance in the ISM of low-metallicity systems that would counterbalance the astration processes.
  •  
8.
  • Tang, B., et al. (author)
  • The Gaia-ESO survey : the inner disk intermediate-age open cluster NGC 6802
  • 2017
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 601
  • Journal article (peer-reviewed)abstract
    • Milky Way open clusters are very diverse in terms of age, chemical composition, and kinematic properties. Intermediate-age and old open clusters are less common, and it is even harder to find them inside the solar Galactocentric radius, due to the high mortality rate and strong extinction inside this region. NGC 6802 is one of the inner disk open clusters (IOCs) observed by the Gaia-ESO survey (GES). This cluster is an important target for calibrating the abundances derived in the survey due to the kinematic and chemical homogeneity of the members in open clusters. Using the measurements from Gaia-ESO internal data release 4 (iDR4), we identify 95 main-sequence dwarfs as cluster members from the GIRAFFE target list, and eight giants as cluster members from the UVES target list. The dwarf cluster members have a median radial velocity of 13.6 +/- 1.9 km s(-1), while the giant cluster members have a median radial velocity of 12.0 +/- 0.9 km s(-1) and a median [Fe/H] of 0.10 +/- 0.02 dex. The color-magnitude diagram of these cluster members suggests an age of 0.9 +/- 0.1 Gyr, with (m - M)(0) = 11.4 and E(B - V) = 0.86. We perform the first detailed chemical abundance analysis of NGC 6802, including 27 elemental species. To gain a more general picture about IOCs, the measurements of NGC 6802 are compared with those of other IOCs previously studied by GES, that is, NGC 4815, Trumpler 20, NGC 6705, and Berkeley 81. NGC 6802 shows similar C, N, Na, and Al abundances as other IOCs. These elements are compared with nucleosynthetic models as a function of cluster turn-off mass. The alpha, iron-peak, and neutron-capture elements are also explored in a self-consistent way.
  •  
9.
  • Albarran, M. L. Gutierrez, et al. (author)
  • The Gaia-ESO Survey : Calibrating the lithium-age relation with open clusters and associations: II. Expanded cluster sample and final membership selection
  • 2024
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 685
  • Journal article (peer-reviewed)abstract
    • Context. The Li abundance observed in pre-main sequence and main sequence late-type stars is strongly age-dependent, but also shows a complex pattern depending on several parameters, such as rotation, chromospheric activity, and metallicity. The best way to calibrate these effects, and with the aim of studying Li as an age indicator for FGK stars, is to calibrate coeval groups of stars, such as open clusters (OCs) and associations.Aims. We present a considerable target sample of 42 OCs and associations - with an age range from 1 Myr to 5 Gyr - observed within the Gaia-ESO survey (GES), and using the latest data provided by GES iDR6 and the most recent release of Gaia that was then available, EDR3. As part of this study, we update and improve the membership analysis for all 20 OCs presented in our previous article.Methods. We perform detailed membership analyses for all target clusters to identify likely candidates, using all available parameters provided by GES, complemented with detailed bibliographical searches, and based on numerous criteria: from radial velocity distributions, to the astrometry (proper motions and parallaxes) and photometry provided by Gaia, to gravity indicators (log g and the gamma index), [Fe/H] metallicity, and Li content in diagrams of (Li equivalent widths) EW(Li) versus Teff.Results. We obtain updated lists of cluster members for the whole target sample, as well as a selection of Li-rich giant contaminants obtained as an additional result of the membership process. Each selection of cluster candidates was thoroughly contrasted with numerous existing membership studies using data from Gaia to ensure the most robust results.Conclusions. These final cluster selections will be used in the third and last paper of this series, which reports the results of a comparative study characterising the observable Li dispersion in each cluster and analysing its dependence on several parameters, allowing us to calibrate a Li-age relation and obtain a series of empirical Li envelopes for key ages in our sample.
  •  
10.
  • Bragaglia, A., et al. (author)
  • The Gaia-ESO Survey : Target selection of open cluster stars & x22c6
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 659
  • Journal article (peer-reviewed)abstract
    • Context. The Gaia-ESO Survey (GES) is a public, high-resolution spectroscopic survey, conducted with the multi-object spectrograph Fibre Large Array Multi Element Spectrograph (FLAMES) on the Very Large Telescope (European Southern Observatory, ESO, Cerro Paranal, Chile) from December 2011 to January 2018. Gaia-ESO has targeted all the main stellar components of the Milky Way, including thin and thick disc, bulge, and halo. In particular, a large sample of open clusters has been observed, from very young ones, just out of the embedded phase, to very old ones. Aims. The different kinds of clusters and stars targeted in them are useful to reach the main science goals of the open cluster part of GES, which are the study of the open cluster structure and dynamics, the use of open clusters to constrain and improve stellar evolution models, and the definition of Galactic disc properties (e.g., metallicity distribution). Methods. The Gaia-ESO Survey is organised in 19 working groups (WGs), each one being responsible for a task. We describe here the work of three of them, one in charge of the selection of the targets within each cluster or association (WG4), one responsible for defining the most probable candidate member stars (WG1), and another one in charge of the preparation of the observations (WG6). As the entire GES has been conducted before the second Gaia data release, we could not make use of the Gaia astrometry to define cluster member candidates. We made use of public and private photometry to select the stars to be observed with FLAMES, once brought on a common astrometric system (the one defined by 2MASS). Candidate target selection was based on ground-based proper motions, radial velocities, and X-ray properties when appropriate, for example, and it was mostly used to define the position of the clusters' evolutionary sequences in the colour-magnitude diagrams. Targets for GIRAFFE were then selected near the sequences in an unbiased way. We used known information on membership, when available, only for the few stars to be observed with UVES. Results. We collected spectra for 62 confirmed clusters in the main observing campaign (and a few more clusters were taken from the ESO archive). Among them are very young clusters, where the main targets are pre-main sequence stars, clusters with very hot and massive stars currently on the main sequence, intermediate-age and old clusters where evolved stars are the main targets. Our strategy of making the selection of targets as inclusive and unbiased as possible and of observing a significant and representative fraction of all possible targets permitted us to collect the largest, most accurate, and most homogeneous spectroscopic data set on open star clusters ever achieved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 62

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view