SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Malm S) "

Search: WFRF:(Malm S)

  • Result 1-10 of 145
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Adam, A, et al. (author)
  • Abstracts from Hydrocephalus 2016.
  • 2017
  • In: Fluids and Barriers of the CNS. - : Springer Science and Business Media LLC. - 2045-8118. ; 14:Suppl 1
  • Journal article (peer-reviewed)
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Bayrak Pehlivan, Ilknur, et al. (author)
  • The climatic response of thermally integrated photovoltaic-electrolysis water splitting using Si and CIGS combined with acidic and alkaline electrolysis
  • 2020
  • In: Sustainable Energy & Fuels. - : ROYAL SOC CHEMISTRY. - 2398-4902. ; 4:12, s. 6011-6022
  • Journal article (peer-reviewed)abstract
    • The Horizon 2020 project PECSYS aims to build a large area demonstrator for hydrogen production from solar energy via integrated photovoltaic (PV) and electrolysis systems of different types. In this study, Si- and CIGS-based photovoltaics are developed together with three different electrolyzer systems for use in the corresponding integrated devices. The systems are experimentally evaluated and a general model is developed to investigate the hydrogen yield under real climatic conditions for various thin film and silicon PV technologies and electrolyser combinations. PV characteristics using a Si heterojunction (SHJ), thin film CuInxGa1-xSe2, crystalline Si with passivated emitter rear totally diffused and thin film Si are used together with temperature dependent catalyst load curves from both acidic and alkaline approaches. Electrolysis data were collected from (i) a Pt-IrO2-based acidic electrolysis system, and (ii) NiMoW-NiO-based and (iii) Pt-Ni foam-based alkaline electrolysis systems. The calculations were performed for mid-European climate data from Julich, Germany, which will be the installation site. The best systems show an electricity-to-hydrogen conversion efficiency of 74% and over 12% solar-to-hydrogen (STH) efficiencies using both acidic and alkaline approaches and are validated with a smaller lab scale prototype. The results show that the lower power delivered by all the PV technologies under low irradiation is balanced by the lower demand for overpotentials for all the electrolysis approaches at these currents, with more or less retained STH efficiency over the full year if the catalyst area is the same as the PV area for the alkaline approach. The total yield of hydrogen, however, follows the irradiance, where a yearly hydrogen production of over 35 kg can be achieved for a 10 m(2) integrated PV-electrolysis system for several of the PV and electrolyser combinations that also allow a significant (100-fold) reduction in necessary electrolyser area for the acidic approach. Measuring the catalyst systems under intermittent and ramping conditions with different temperatures, a 5% lowering of the yearly hydrogen yield is extracted for some of the catalyst systems while the Pt-Ni foam-based alkaline system showed unaffected or even slightly increased yearly yield under the same conditions.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 145
Type of publication
journal article (106)
conference paper (32)
research review (2)
book chapter (2)
editorial collection (1)
reports (1)
show more...
other publication (1)
show less...
Type of content
peer-reviewed (124)
other academic/artistic (18)
pop. science, debate, etc. (3)
Author/Editor
Wang, Q. (19)
Malm, T. (16)
Malm, Johan (16)
Malm, J (10)
Holtz, Per-Olof, 195 ... (9)
Pettersson, H (7)
show more...
Marko-Varga, György (6)
Welinder, Charlotte (6)
Östling, Mikael (5)
Schlatter, Philipp (5)
Holtz, Per-Olof (5)
Hellström, Per-Erik (4)
Malm, Claes (4)
Henningson, Dan S. (4)
Pettersson, Håkan, 1 ... (4)
Malm, U (4)
Jeppsson, Anders, 19 ... (4)
Hammar, Mattias (4)
Malm, Gunnar (4)
Olsson, Håkan (3)
Gustafsson, Oscar (3)
Vegvari, Akos (3)
Petrescu, A (3)
Malm, B. Gunnar, 197 ... (3)
Deppert, Knut (3)
Persson, S (3)
Eklund, Anders (3)
Andersson, Jan Y. (3)
CARLSSON, A (3)
Pettersson, Håkan (3)
Karim, A (3)
Walter, H (3)
Baldetorp, Bo (3)
Nogueira, Fabio C.S. (3)
Domont, Gilberto B. (3)
Hober, Sophia (3)
Gustafsson, C (3)
Holtz, P O (3)
Schulman, S (3)
Malmqvist, K (3)
Sturchio, A (3)
Lindmarker, P (3)
Bjorkholm, M (3)
Larfars, G (3)
Hansson, Emma C., 19 ... (3)
Wahlin, A (3)
Andrén, Per E. (3)
Svensson, E. (3)
Gustafsson, O. (3)
Ohlsson, A (3)
show less...
University
Karolinska Institutet (44)
Lund University (37)
Royal Institute of Technology (25)
Linköping University (24)
University of Gothenburg (21)
Uppsala University (17)
show more...
Halmstad University (7)
RISE (6)
Umeå University (5)
Stockholm University (4)
Luleå University of Technology (3)
Örebro University (3)
Chalmers University of Technology (2)
Linnaeus University (2)
Mälardalen University (1)
Malmö University (1)
Karlstad University (1)
Swedish Museum of Natural History (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (143)
Swedish (1)
Undefined language (1)
Research subject (UKÄ/SCB)
Medical and Health Sciences (44)
Natural sciences (37)
Engineering and Technology (19)
Social Sciences (5)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view